| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climsub | Structured version Visualization version GIF version | ||
| Description: Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.) |
| Ref | Expression |
|---|---|
| climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climadd.6 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
| climadd.7 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
| climadd.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| climadd.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
| climsub.h | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
| Ref | Expression |
|---|---|
| climsub | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climadd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climadd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climadd.4 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 4 | climcl 15406 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 6 | climadd.7 | . . 3 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
| 7 | climcl 15406 | . . 3 ⊢ (𝐺 ⇝ 𝐵 → 𝐵 ∈ ℂ) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 9 | subcl 11362 | . . 3 ⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 − 𝑣) ∈ ℂ) | |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 − 𝑣) ∈ ℂ) |
| 11 | climadd.6 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
| 12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
| 13 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℂ) |
| 14 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℂ) |
| 15 | subcn2 15502 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐴)) < 𝑦 ∧ (abs‘(𝑣 − 𝐵)) < 𝑧) → (abs‘((𝑢 − 𝑣) − (𝐴 − 𝐵))) < 𝑥)) | |
| 16 | 12, 13, 14, 15 | syl3anc 1373 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐴)) < 𝑦 ∧ (abs‘(𝑣 − 𝐵)) < 𝑧) → (abs‘((𝑢 − 𝑣) − (𝐴 − 𝐵))) < 𝑥)) |
| 17 | climadd.8 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 18 | climadd.9 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) | |
| 19 | climsub.h | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) − (𝐺‘𝑘))) | |
| 20 | 1, 2, 5, 8, 10, 3, 6, 11, 16, 17, 18, 19 | climcn2 15500 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 < clt 11149 − cmin 11347 ℤcz 12471 ℤ≥cuz 12735 ℝ+crp 12893 abscabs 15141 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 |
| This theorem is referenced by: climsubc1 15545 climsubc2 15546 climle 15547 supcvg 15763 mbfi1flimlem 25621 ulmdvlem1 26307 abelthlem6 26344 atantayl 26845 lgamcvg2 26963 hashnzfzclim 44305 binomcxplemrat 44333 climsubmpt 45651 ioodvbdlimc2lem 45925 |
| Copyright terms: Public domain | W3C validator |