MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsub Structured version   Visualization version   GIF version

Theorem climsub 15638
Description: Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 𝑍 = (ℤ𝑀)
climadd.2 (𝜑𝑀 ∈ ℤ)
climadd.4 (𝜑𝐹𝐴)
climadd.6 (𝜑𝐻𝑋)
climadd.7 (𝜑𝐺𝐵)
climadd.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climadd.9 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
climsub.h ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
Assertion
Ref Expression
climsub (𝜑𝐻 ⇝ (𝐴𝐵))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝐻   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem climsub
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . 2 𝑍 = (ℤ𝑀)
2 climadd.2 . 2 (𝜑𝑀 ∈ ℤ)
3 climadd.4 . . 3 (𝜑𝐹𝐴)
4 climcl 15503 . . 3 (𝐹𝐴𝐴 ∈ ℂ)
53, 4syl 17 . 2 (𝜑𝐴 ∈ ℂ)
6 climadd.7 . . 3 (𝜑𝐺𝐵)
7 climcl 15503 . . 3 (𝐺𝐵𝐵 ∈ ℂ)
86, 7syl 17 . 2 (𝜑𝐵 ∈ ℂ)
9 subcl 11511 . . 3 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢𝑣) ∈ ℂ)
109adantl 480 . 2 ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢𝑣) ∈ ℂ)
11 climadd.6 . 2 (𝜑𝐻𝑋)
12 simpr 483 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
135adantr 479 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ∈ ℂ)
148adantr 479 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℂ)
15 subcn2 15599 . . 3 ((𝑥 ∈ ℝ+𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐴𝐵))) < 𝑥))
1612, 13, 14, 15syl3anc 1368 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐴𝐵))) < 𝑥))
17 climadd.8 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
18 climadd.9 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
19 climsub.h . 2 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
201, 2, 5, 8, 10, 3, 6, 11, 16, 17, 18, 19climcn2 15597 1 (𝜑𝐻 ⇝ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060   class class class wbr 5155  cfv 6556  (class class class)co 7426  cc 11158   < clt 11300  cmin 11496  cz 12612  cuz 12876  +crp 13030  abscabs 15241  cli 15488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237  ax-pre-sup 11238
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-sup 9487  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12613  df-uz 12877  df-rp 13031  df-seq 14024  df-exp 14084  df-cj 15106  df-re 15107  df-im 15108  df-sqrt 15242  df-abs 15243  df-clim 15492
This theorem is referenced by:  climsubc1  15642  climsubc2  15643  climle  15644  supcvg  15862  mbfi1flimlem  25746  ulmdvlem1  26432  abelthlem6  26469  atantayl  26968  lgamcvg2  27086  hashnzfzclim  44014  binomcxplemrat  44042  climsubmpt  45299  ioodvbdlimc2lem  45573
  Copyright terms: Public domain W3C validator