MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climsub Structured version   Visualization version   GIF version

Theorem climsub 14748
Description: Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
climadd.1 𝑍 = (ℤ𝑀)
climadd.2 (𝜑𝑀 ∈ ℤ)
climadd.4 (𝜑𝐹𝐴)
climadd.6 (𝜑𝐻𝑋)
climadd.7 (𝜑𝐺𝐵)
climadd.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climadd.9 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
climsub.h ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
Assertion
Ref Expression
climsub (𝜑𝐻 ⇝ (𝐴𝐵))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘   𝐴,𝑘   𝑘,𝐺   𝑘,𝐻   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem climsub
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . 2 𝑍 = (ℤ𝑀)
2 climadd.2 . 2 (𝜑𝑀 ∈ ℤ)
3 climadd.4 . . 3 (𝜑𝐹𝐴)
4 climcl 14614 . . 3 (𝐹𝐴𝐴 ∈ ℂ)
53, 4syl 17 . 2 (𝜑𝐴 ∈ ℂ)
6 climadd.7 . . 3 (𝜑𝐺𝐵)
7 climcl 14614 . . 3 (𝐺𝐵𝐵 ∈ ℂ)
86, 7syl 17 . 2 (𝜑𝐵 ∈ ℂ)
9 subcl 10607 . . 3 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢𝑣) ∈ ℂ)
109adantl 475 . 2 ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢𝑣) ∈ ℂ)
11 climadd.6 . 2 (𝜑𝐻𝑋)
12 simpr 479 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
135adantr 474 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝐴 ∈ ℂ)
148adantr 474 . . 3 ((𝜑𝑥 ∈ ℝ+) → 𝐵 ∈ ℂ)
15 subcn2 14709 . . 3 ((𝑥 ∈ ℝ+𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐴𝐵))) < 𝑥))
1612, 13, 14, 15syl3anc 1494 . 2 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐴𝐵))) < 𝑥))
17 climadd.8 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
18 climadd.9 . 2 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
19 climsub.h . 2 ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
201, 2, 5, 8, 10, 3, 6, 11, 16, 17, 18, 19climcn2 14707 1 (𝜑𝐻 ⇝ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wral 3117  wrex 3118   class class class wbr 4875  cfv 6127  (class class class)co 6910  cc 10257   < clt 10398  cmin 10592  cz 11711  cuz 11975  +crp 12119  abscabs 14358  cli 14599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603
This theorem is referenced by:  climsubc1  14752  climsubc2  14753  climle  14754  supcvg  14969  mbfi1flimlem  23895  ulmdvlem1  24560  abelthlem6  24596  atantayl  25084  lgamcvg2  25201  hashnzfzclim  39360  binomcxplemrat  39388  climsubmpt  40685  ioodvbdlimc2lem  40942
  Copyright terms: Public domain W3C validator