![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1fval | Structured version Visualization version GIF version |
Description: Value of the univariate polynomial coefficient function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
coe1fval | ⊢ (𝐹 ∈ 𝑉 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3493 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | coe1fval.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
3 | fveq1 6887 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘(1o × {𝑛})) = (𝐹‘(1o × {𝑛}))) | |
4 | 3 | mpteq2dv 5249 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑛 ∈ ℕ0 ↦ (𝑓‘(1o × {𝑛}))) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))) |
5 | df-coe1 21689 | . . . 4 ⊢ coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (𝑓‘(1o × {𝑛})))) | |
6 | nn0ex 12474 | . . . . 5 ⊢ ℕ0 ∈ V | |
7 | 6 | mptex 7220 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))) ∈ V |
8 | 4, 5, 7 | fvmpt 6994 | . . 3 ⊢ (𝐹 ∈ V → (coe1‘𝐹) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))) |
9 | 2, 8 | eqtrid 2785 | . 2 ⊢ (𝐹 ∈ V → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))) |
10 | 1, 9 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑉 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 {csn 4627 ↦ cmpt 5230 × cxp 5673 ‘cfv 6540 1oc1o 8454 ℕ0cn0 12468 coe1cco1 21684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-1cn 11164 ax-addcl 11166 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7407 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-nn 12209 df-n0 12469 df-coe1 21689 |
This theorem is referenced by: coe1fv 21712 coe1fval3 21714 |
Copyright terms: Public domain | W3C validator |