MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fval Structured version   Visualization version   GIF version

Theorem coe1fval 21376
Description: Value of the univariate polynomial coefficient function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypothesis
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
coe1fval (𝐹𝑉𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))))
Distinct variable group:   𝑛,𝐹
Allowed substitution hints:   𝐴(𝑛)   𝑉(𝑛)

Proof of Theorem coe1fval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐹𝑉𝐹 ∈ V)
2 coe1fval.a . . 3 𝐴 = (coe1𝐹)
3 fveq1 6773 . . . . 5 (𝑓 = 𝐹 → (𝑓‘(1o × {𝑛})) = (𝐹‘(1o × {𝑛})))
43mpteq2dv 5176 . . . 4 (𝑓 = 𝐹 → (𝑛 ∈ ℕ0 ↦ (𝑓‘(1o × {𝑛}))) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))))
5 df-coe1 21354 . . . 4 coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (𝑓‘(1o × {𝑛}))))
6 nn0ex 12239 . . . . 5 0 ∈ V
76mptex 7099 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))) ∈ V
84, 5, 7fvmpt 6875 . . 3 (𝐹 ∈ V → (coe1𝐹) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))))
92, 8eqtrid 2790 . 2 (𝐹 ∈ V → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))))
101, 9syl 17 1 (𝐹𝑉𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  cmpt 5157   × cxp 5587  cfv 6433  1oc1o 8290  0cn0 12233  coe1cco1 21349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-n0 12234  df-coe1 21354
This theorem is referenced by:  coe1fv  21377  coe1fval3  21379
  Copyright terms: Public domain W3C validator