MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fval Structured version   Visualization version   GIF version

Theorem coe1fval 20837
Description: Value of the univariate polynomial coefficient function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypothesis
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
coe1fval (𝐹𝑉𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))))
Distinct variable group:   𝑛,𝐹
Allowed substitution hints:   𝐴(𝑛)   𝑉(𝑛)

Proof of Theorem coe1fval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elex 3462 . 2 (𝐹𝑉𝐹 ∈ V)
2 coe1fval.a . . 3 𝐴 = (coe1𝐹)
3 fveq1 6648 . . . . 5 (𝑓 = 𝐹 → (𝑓‘(1o × {𝑛})) = (𝐹‘(1o × {𝑛})))
43mpteq2dv 5129 . . . 4 (𝑓 = 𝐹 → (𝑛 ∈ ℕ0 ↦ (𝑓‘(1o × {𝑛}))) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))))
5 df-coe1 20815 . . . 4 coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (𝑓‘(1o × {𝑛}))))
6 nn0ex 11895 . . . . 5 0 ∈ V
76mptex 6967 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))) ∈ V
84, 5, 7fvmpt 6749 . . 3 (𝐹 ∈ V → (coe1𝐹) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))))
92, 8syl5eq 2848 . 2 (𝐹 ∈ V → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))))
101, 9syl 17 1 (𝐹𝑉𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  Vcvv 3444  {csn 4528  cmpt 5113   × cxp 5521  cfv 6328  1oc1o 8082  0cn0 11889  coe1cco1 20810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-1cn 10588  ax-addcl 10590
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-nn 11630  df-n0 11890  df-coe1 20815
This theorem is referenced by:  coe1fv  20838  coe1fval3  20840
  Copyright terms: Public domain W3C validator