![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1fval | Structured version Visualization version GIF version |
Description: Value of the univariate polynomial coefficient function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
coe1fval | ⊢ (𝐹 ∈ 𝑉 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . 2 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | coe1fval.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
3 | fveq1 6906 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘(1o × {𝑛})) = (𝐹‘(1o × {𝑛}))) | |
4 | 3 | mpteq2dv 5250 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑛 ∈ ℕ0 ↦ (𝑓‘(1o × {𝑛}))) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))) |
5 | df-coe1 22200 | . . . 4 ⊢ coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (𝑓‘(1o × {𝑛})))) | |
6 | nn0ex 12530 | . . . . 5 ⊢ ℕ0 ∈ V | |
7 | 6 | mptex 7243 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))) ∈ V |
8 | 4, 5, 7 | fvmpt 7016 | . . 3 ⊢ (𝐹 ∈ V → (coe1‘𝐹) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))) |
9 | 2, 8 | eqtrid 2787 | . 2 ⊢ (𝐹 ∈ V → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))) |
10 | 1, 9 | syl 17 | 1 ⊢ (𝐹 ∈ 𝑉 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 ↦ cmpt 5231 × cxp 5687 ‘cfv 6563 1oc1o 8498 ℕ0cn0 12524 coe1cco1 22195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-n0 12525 df-coe1 22200 |
This theorem is referenced by: coe1fv 22224 coe1fval3 22226 |
Copyright terms: Public domain | W3C validator |