| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1fv | Structured version Visualization version GIF version | ||
| Description: Value of an evaluated coefficient in a polynomial coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
| Ref | Expression |
|---|---|
| coe1fv | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴‘𝑁) = (𝐹‘(1o × {𝑁}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | . . . 4 ⊢ 𝐴 = (coe1‘𝐹) | |
| 2 | 1 | coe1fval 22113 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))) |
| 3 | 2 | fveq1d 6819 | . 2 ⊢ (𝐹 ∈ 𝑉 → (𝐴‘𝑁) = ((𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))‘𝑁)) |
| 4 | sneq 4581 | . . . . 5 ⊢ (𝑛 = 𝑁 → {𝑛} = {𝑁}) | |
| 5 | 4 | xpeq2d 5641 | . . . 4 ⊢ (𝑛 = 𝑁 → (1o × {𝑛}) = (1o × {𝑁})) |
| 6 | 5 | fveq2d 6821 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐹‘(1o × {𝑛})) = (𝐹‘(1o × {𝑁}))) |
| 7 | eqid 2731 | . . 3 ⊢ (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))) | |
| 8 | fvex 6830 | . . 3 ⊢ (𝐹‘(1o × {𝑁})) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6924 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))‘𝑁) = (𝐹‘(1o × {𝑁}))) |
| 10 | 3, 9 | sylan9eq 2786 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴‘𝑁) = (𝐹‘(1o × {𝑁}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4571 ↦ cmpt 5167 × cxp 5609 ‘cfv 6476 1oc1o 8373 ℕ0cn0 12376 coe1cco1 22085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-1cn 11059 ax-addcl 11061 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-n0 12377 df-coe1 22090 |
| This theorem is referenced by: fvcoe1 22115 coe1mul2 22178 deg1le0 26038 |
| Copyright terms: Public domain | W3C validator |