MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fv Structured version   Visualization version   GIF version

Theorem coe1fv 21287
Description: Value of an evaluated coefficient in a polynomial coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypothesis
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
coe1fv ((𝐹𝑉𝑁 ∈ ℕ0) → (𝐴𝑁) = (𝐹‘(1o × {𝑁})))

Proof of Theorem coe1fv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 coe1fval.a . . . 4 𝐴 = (coe1𝐹)
21coe1fval 21286 . . 3 (𝐹𝑉𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))))
32fveq1d 6758 . 2 (𝐹𝑉 → (𝐴𝑁) = ((𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))‘𝑁))
4 sneq 4568 . . . . 5 (𝑛 = 𝑁 → {𝑛} = {𝑁})
54xpeq2d 5610 . . . 4 (𝑛 = 𝑁 → (1o × {𝑛}) = (1o × {𝑁}))
65fveq2d 6760 . . 3 (𝑛 = 𝑁 → (𝐹‘(1o × {𝑛})) = (𝐹‘(1o × {𝑁})))
7 eqid 2738 . . 3 (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))
8 fvex 6769 . . 3 (𝐹‘(1o × {𝑁})) ∈ V
96, 7, 8fvmpt 6857 . 2 (𝑁 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))‘𝑁) = (𝐹‘(1o × {𝑁})))
103, 9sylan9eq 2799 1 ((𝐹𝑉𝑁 ∈ ℕ0) → (𝐴𝑁) = (𝐹‘(1o × {𝑁})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {csn 4558  cmpt 5153   × cxp 5578  cfv 6418  1oc1o 8260  0cn0 12163  coe1cco1 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-n0 12164  df-coe1 21264
This theorem is referenced by:  fvcoe1  21288  coe1mul2  21350  deg1le0  25181
  Copyright terms: Public domain W3C validator