![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1fv | Structured version Visualization version GIF version |
Description: Value of an evaluated coefficient in a polynomial coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
coe1fv | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴‘𝑁) = (𝐹‘(1o × {𝑁}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1fval.a | . . . 4 ⊢ 𝐴 = (coe1‘𝐹) | |
2 | 1 | coe1fval 22228 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))) |
3 | 2 | fveq1d 6922 | . 2 ⊢ (𝐹 ∈ 𝑉 → (𝐴‘𝑁) = ((𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))‘𝑁)) |
4 | sneq 4658 | . . . . 5 ⊢ (𝑛 = 𝑁 → {𝑛} = {𝑁}) | |
5 | 4 | xpeq2d 5730 | . . . 4 ⊢ (𝑛 = 𝑁 → (1o × {𝑛}) = (1o × {𝑁})) |
6 | 5 | fveq2d 6924 | . . 3 ⊢ (𝑛 = 𝑁 → (𝐹‘(1o × {𝑛})) = (𝐹‘(1o × {𝑁}))) |
7 | eqid 2740 | . . 3 ⊢ (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))) | |
8 | fvex 6933 | . . 3 ⊢ (𝐹‘(1o × {𝑁})) ∈ V | |
9 | 6, 7, 8 | fvmpt 7029 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))‘𝑁) = (𝐹‘(1o × {𝑁}))) |
10 | 3, 9 | sylan9eq 2800 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴‘𝑁) = (𝐹‘(1o × {𝑁}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {csn 4648 ↦ cmpt 5249 × cxp 5698 ‘cfv 6573 1oc1o 8515 ℕ0cn0 12553 coe1cco1 22200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-n0 12554 df-coe1 22205 |
This theorem is referenced by: fvcoe1 22230 coe1mul2 22293 deg1le0 26170 |
Copyright terms: Public domain | W3C validator |