MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fv Structured version   Visualization version   GIF version

Theorem coe1fv 20366
Description: Value of an evaluated coefficient in a polynomial coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypothesis
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
coe1fv ((𝐹𝑉𝑁 ∈ ℕ0) → (𝐴𝑁) = (𝐹‘(1o × {𝑁})))

Proof of Theorem coe1fv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 coe1fval.a . . . 4 𝐴 = (coe1𝐹)
21coe1fval 20365 . . 3 (𝐹𝑉𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))))
32fveq1d 6665 . 2 (𝐹𝑉 → (𝐴𝑁) = ((𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))‘𝑁))
4 sneq 4569 . . . . 5 (𝑛 = 𝑁 → {𝑛} = {𝑁})
54xpeq2d 5578 . . . 4 (𝑛 = 𝑁 → (1o × {𝑛}) = (1o × {𝑁}))
65fveq2d 6667 . . 3 (𝑛 = 𝑁 → (𝐹‘(1o × {𝑛})) = (𝐹‘(1o × {𝑁})))
7 eqid 2819 . . 3 (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))
8 fvex 6676 . . 3 (𝐹‘(1o × {𝑁})) ∈ V
96, 7, 8fvmpt 6761 . 2 (𝑁 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))‘𝑁) = (𝐹‘(1o × {𝑁})))
103, 9sylan9eq 2874 1 ((𝐹𝑉𝑁 ∈ ℕ0) → (𝐴𝑁) = (𝐹‘(1o × {𝑁})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  {csn 4559  cmpt 5137   × cxp 5546  cfv 6348  1oc1o 8087  0cn0 11889  coe1cco1 20338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-1cn 10587  ax-addcl 10589
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-nn 11631  df-n0 11890  df-coe1 20343
This theorem is referenced by:  fvcoe1  20367  coe1mul2  20429  deg1le0  24697
  Copyright terms: Public domain W3C validator