MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fv Structured version   Visualization version   GIF version

Theorem coe1fv 22138
Description: Value of an evaluated coefficient in a polynomial coefficient vector. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypothesis
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
coe1fv ((𝐹𝑉𝑁 ∈ ℕ0) → (𝐴𝑁) = (𝐹‘(1o × {𝑁})))

Proof of Theorem coe1fv
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 coe1fval.a . . . 4 𝐴 = (coe1𝐹)
21coe1fval 22137 . . 3 (𝐹𝑉𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))))
32fveq1d 6833 . 2 (𝐹𝑉 → (𝐴𝑁) = ((𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))‘𝑁))
4 sneq 4587 . . . . 5 (𝑛 = 𝑁 → {𝑛} = {𝑁})
54xpeq2d 5651 . . . 4 (𝑛 = 𝑁 → (1o × {𝑛}) = (1o × {𝑁}))
65fveq2d 6835 . . 3 (𝑛 = 𝑁 → (𝐹‘(1o × {𝑛})) = (𝐹‘(1o × {𝑁})))
7 eqid 2733 . . 3 (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛}))) = (𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))
8 fvex 6844 . . 3 (𝐹‘(1o × {𝑁})) ∈ V
96, 7, 8fvmpt 6938 . 2 (𝑁 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑛})))‘𝑁) = (𝐹‘(1o × {𝑁})))
103, 9sylan9eq 2788 1 ((𝐹𝑉𝑁 ∈ ℕ0) → (𝐴𝑁) = (𝐹‘(1o × {𝑁})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {csn 4577  cmpt 5176   × cxp 5619  cfv 6489  1oc1o 8387  0cn0 12392  coe1cco1 22109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-1cn 11075  ax-addcl 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-nn 12137  df-n0 12393  df-coe1 22114
This theorem is referenced by:  fvcoe1  22139  coe1mul2  22202  deg1le0  26063
  Copyright terms: Public domain W3C validator