| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1fval3 | Structured version Visualization version GIF version | ||
| Description: Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
| coe1f2.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1f2.p | ⊢ 𝑃 = (PwSer1‘𝑅) |
| coe1fval3.g | ⊢ 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
| Ref | Expression |
|---|---|
| coe1fval3 | ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
| 2 | 1 | coe1fval 22139 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦})))) |
| 3 | coe1f2.p | . . . . 5 ⊢ 𝑃 = (PwSer1‘𝑅) | |
| 4 | coe1f2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 5 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 3, 4, 5 | psr1basf 22135 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
| 7 | ssv 3983 | . . . 4 ⊢ (Base‘𝑅) ⊆ V | |
| 8 | fss 6721 | . . . 4 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶(Base‘𝑅) ∧ (Base‘𝑅) ⊆ V) → 𝐹:(ℕ0 ↑m 1o)⟶V) | |
| 9 | 6, 7, 8 | sylancl 586 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶V) |
| 10 | fconst6g 6766 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (1o × {𝑦}):1o⟶ℕ0) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}):1o⟶ℕ0) |
| 12 | nn0ex 12505 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 13 | 1oex 8488 | . . . . . 6 ⊢ 1o ∈ V | |
| 14 | 12, 13 | elmap 8883 | . . . . 5 ⊢ ((1o × {𝑦}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {𝑦}):1o⟶ℕ0) |
| 15 | 11, 14 | sylibr 234 | . . . 4 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}) ∈ (ℕ0 ↑m 1o)) |
| 16 | coe1fval3.g | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) | |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))) |
| 18 | id 22 | . . . . 5 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → 𝐹:(ℕ0 ↑m 1o)⟶V) | |
| 19 | 18 | feqmptd 6946 | . . . 4 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → 𝐹 = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝐹‘𝑥))) |
| 20 | fveq2 6875 | . . . 4 ⊢ (𝑥 = (1o × {𝑦}) → (𝐹‘𝑥) = (𝐹‘(1o × {𝑦}))) | |
| 21 | 15, 17, 19, 20 | fmptco 7118 | . . 3 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → (𝐹 ∘ 𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦})))) |
| 22 | 9, 21 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ 𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦})))) |
| 23 | 2, 22 | eqtr4d 2773 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 {csn 4601 ↦ cmpt 5201 × cxp 5652 ∘ ccom 5658 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 1oc1o 8471 ↑m cmap 8838 ℕ0cn0 12499 Basecbs 17226 PwSer1cps1 22108 coe1cco1 22111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-tset 17288 df-ple 17289 df-psr 21867 df-opsr 21871 df-psr1 22113 df-coe1 22116 |
| This theorem is referenced by: coe1f2 22143 coe1fval2 22144 coe1mul2 22204 |
| Copyright terms: Public domain | W3C validator |