| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1fval3 | Structured version Visualization version GIF version | ||
| Description: Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
| coe1f2.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1f2.p | ⊢ 𝑃 = (PwSer1‘𝑅) |
| coe1fval3.g | ⊢ 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
| Ref | Expression |
|---|---|
| coe1fval3 | ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
| 2 | 1 | coe1fval 22090 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦})))) |
| 3 | coe1f2.p | . . . . 5 ⊢ 𝑃 = (PwSer1‘𝑅) | |
| 4 | coe1f2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 3, 4, 5 | psr1basf 22086 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
| 7 | ssv 3971 | . . . 4 ⊢ (Base‘𝑅) ⊆ V | |
| 8 | fss 6704 | . . . 4 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶(Base‘𝑅) ∧ (Base‘𝑅) ⊆ V) → 𝐹:(ℕ0 ↑m 1o)⟶V) | |
| 9 | 6, 7, 8 | sylancl 586 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶V) |
| 10 | fconst6g 6749 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (1o × {𝑦}):1o⟶ℕ0) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}):1o⟶ℕ0) |
| 12 | nn0ex 12448 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 13 | 1oex 8444 | . . . . . 6 ⊢ 1o ∈ V | |
| 14 | 12, 13 | elmap 8844 | . . . . 5 ⊢ ((1o × {𝑦}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {𝑦}):1o⟶ℕ0) |
| 15 | 11, 14 | sylibr 234 | . . . 4 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}) ∈ (ℕ0 ↑m 1o)) |
| 16 | coe1fval3.g | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) | |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))) |
| 18 | id 22 | . . . . 5 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → 𝐹:(ℕ0 ↑m 1o)⟶V) | |
| 19 | 18 | feqmptd 6929 | . . . 4 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → 𝐹 = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝐹‘𝑥))) |
| 20 | fveq2 6858 | . . . 4 ⊢ (𝑥 = (1o × {𝑦}) → (𝐹‘𝑥) = (𝐹‘(1o × {𝑦}))) | |
| 21 | 15, 17, 19, 20 | fmptco 7101 | . . 3 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → (𝐹 ∘ 𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦})))) |
| 22 | 9, 21 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ 𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦})))) |
| 23 | 2, 22 | eqtr4d 2767 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {csn 4589 ↦ cmpt 5188 × cxp 5636 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 1oc1o 8427 ↑m cmap 8799 ℕ0cn0 12442 Basecbs 17179 PwSer1cps1 22059 coe1cco1 22062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-tset 17239 df-ple 17240 df-psr 21818 df-opsr 21822 df-psr1 22064 df-coe1 22067 |
| This theorem is referenced by: coe1f2 22094 coe1fval2 22095 coe1mul2 22155 |
| Copyright terms: Public domain | W3C validator |