MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fval3 Structured version   Visualization version   GIF version

Theorem coe1fval3 21289
Description: Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
coe1f2.b 𝐵 = (Base‘𝑃)
coe1f2.p 𝑃 = (PwSer1𝑅)
coe1fval3.g 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))
Assertion
Ref Expression
coe1fval3 (𝐹𝐵𝐴 = (𝐹𝐺))
Distinct variable group:   𝑦,𝐹
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝑃(𝑦)   𝑅(𝑦)   𝐺(𝑦)

Proof of Theorem coe1fval3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coe1fval.a . . 3 𝐴 = (coe1𝐹)
21coe1fval 21286 . 2 (𝐹𝐵𝐴 = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦}))))
3 coe1f2.p . . . . 5 𝑃 = (PwSer1𝑅)
4 coe1f2.b . . . . 5 𝐵 = (Base‘𝑃)
5 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
63, 4, 5psr1basf 21282 . . . 4 (𝐹𝐵𝐹:(ℕ0m 1o)⟶(Base‘𝑅))
7 ssv 3941 . . . 4 (Base‘𝑅) ⊆ V
8 fss 6601 . . . 4 ((𝐹:(ℕ0m 1o)⟶(Base‘𝑅) ∧ (Base‘𝑅) ⊆ V) → 𝐹:(ℕ0m 1o)⟶V)
96, 7, 8sylancl 585 . . 3 (𝐹𝐵𝐹:(ℕ0m 1o)⟶V)
10 fconst6g 6647 . . . . . 6 (𝑦 ∈ ℕ0 → (1o × {𝑦}):1o⟶ℕ0)
1110adantl 481 . . . . 5 ((𝐹:(ℕ0m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}):1o⟶ℕ0)
12 nn0ex 12169 . . . . . 6 0 ∈ V
13 1oex 8280 . . . . . 6 1o ∈ V
1412, 13elmap 8617 . . . . 5 ((1o × {𝑦}) ∈ (ℕ0m 1o) ↔ (1o × {𝑦}):1o⟶ℕ0)
1511, 14sylibr 233 . . . 4 ((𝐹:(ℕ0m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}) ∈ (ℕ0m 1o))
16 coe1fval3.g . . . . 5 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))
1716a1i 11 . . . 4 (𝐹:(ℕ0m 1o)⟶V → 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})))
18 id 22 . . . . 5 (𝐹:(ℕ0m 1o)⟶V → 𝐹:(ℕ0m 1o)⟶V)
1918feqmptd 6819 . . . 4 (𝐹:(ℕ0m 1o)⟶V → 𝐹 = (𝑥 ∈ (ℕ0m 1o) ↦ (𝐹𝑥)))
20 fveq2 6756 . . . 4 (𝑥 = (1o × {𝑦}) → (𝐹𝑥) = (𝐹‘(1o × {𝑦})))
2115, 17, 19, 20fmptco 6983 . . 3 (𝐹:(ℕ0m 1o)⟶V → (𝐹𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦}))))
229, 21syl 17 . 2 (𝐹𝐵 → (𝐹𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦}))))
232, 22eqtr4d 2781 1 (𝐹𝐵𝐴 = (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  {csn 4558  cmpt 5153   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  1oc1o 8260  m cmap 8573  0cn0 12163  Basecbs 16840  PwSer1cps1 21256  coe1cco1 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-psr 21022  df-opsr 21026  df-psr1 21261  df-coe1 21264
This theorem is referenced by:  coe1f2  21290  coe1fval2  21291  coe1mul2  21350
  Copyright terms: Public domain W3C validator