| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1fval3 | Structured version Visualization version GIF version | ||
| Description: Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
| coe1f2.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1f2.p | ⊢ 𝑃 = (PwSer1‘𝑅) |
| coe1fval3.g | ⊢ 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
| Ref | Expression |
|---|---|
| coe1fval3 | ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
| 2 | 1 | coe1fval 22207 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦})))) |
| 3 | coe1f2.p | . . . . 5 ⊢ 𝑃 = (PwSer1‘𝑅) | |
| 4 | coe1f2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 5 | eqid 2737 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 3, 4, 5 | psr1basf 22203 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
| 7 | ssv 4008 | . . . 4 ⊢ (Base‘𝑅) ⊆ V | |
| 8 | fss 6752 | . . . 4 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶(Base‘𝑅) ∧ (Base‘𝑅) ⊆ V) → 𝐹:(ℕ0 ↑m 1o)⟶V) | |
| 9 | 6, 7, 8 | sylancl 586 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶V) |
| 10 | fconst6g 6797 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (1o × {𝑦}):1o⟶ℕ0) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}):1o⟶ℕ0) |
| 12 | nn0ex 12532 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 13 | 1oex 8516 | . . . . . 6 ⊢ 1o ∈ V | |
| 14 | 12, 13 | elmap 8911 | . . . . 5 ⊢ ((1o × {𝑦}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {𝑦}):1o⟶ℕ0) |
| 15 | 11, 14 | sylibr 234 | . . . 4 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}) ∈ (ℕ0 ↑m 1o)) |
| 16 | coe1fval3.g | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) | |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))) |
| 18 | id 22 | . . . . 5 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → 𝐹:(ℕ0 ↑m 1o)⟶V) | |
| 19 | 18 | feqmptd 6977 | . . . 4 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → 𝐹 = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝐹‘𝑥))) |
| 20 | fveq2 6906 | . . . 4 ⊢ (𝑥 = (1o × {𝑦}) → (𝐹‘𝑥) = (𝐹‘(1o × {𝑦}))) | |
| 21 | 15, 17, 19, 20 | fmptco 7149 | . . 3 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → (𝐹 ∘ 𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦})))) |
| 22 | 9, 21 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ 𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦})))) |
| 23 | 2, 22 | eqtr4d 2780 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 {csn 4626 ↦ cmpt 5225 × cxp 5683 ∘ ccom 5689 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 1oc1o 8499 ↑m cmap 8866 ℕ0cn0 12526 Basecbs 17247 PwSer1cps1 22176 coe1cco1 22179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-tset 17316 df-ple 17317 df-psr 21929 df-opsr 21933 df-psr1 22181 df-coe1 22184 |
| This theorem is referenced by: coe1f2 22211 coe1fval2 22212 coe1mul2 22272 |
| Copyright terms: Public domain | W3C validator |