MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fval3 Structured version   Visualization version   GIF version

Theorem coe1fval3 22109
Description: Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
coe1f2.b 𝐵 = (Base‘𝑃)
coe1f2.p 𝑃 = (PwSer1𝑅)
coe1fval3.g 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))
Assertion
Ref Expression
coe1fval3 (𝐹𝐵𝐴 = (𝐹𝐺))
Distinct variable group:   𝑦,𝐹
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝑃(𝑦)   𝑅(𝑦)   𝐺(𝑦)

Proof of Theorem coe1fval3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coe1fval.a . . 3 𝐴 = (coe1𝐹)
21coe1fval 22106 . 2 (𝐹𝐵𝐴 = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦}))))
3 coe1f2.p . . . . 5 𝑃 = (PwSer1𝑅)
4 coe1f2.b . . . . 5 𝐵 = (Base‘𝑃)
5 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
63, 4, 5psr1basf 22102 . . . 4 (𝐹𝐵𝐹:(ℕ0m 1o)⟶(Base‘𝑅))
7 ssv 3962 . . . 4 (Base‘𝑅) ⊆ V
8 fss 6672 . . . 4 ((𝐹:(ℕ0m 1o)⟶(Base‘𝑅) ∧ (Base‘𝑅) ⊆ V) → 𝐹:(ℕ0m 1o)⟶V)
96, 7, 8sylancl 586 . . 3 (𝐹𝐵𝐹:(ℕ0m 1o)⟶V)
10 fconst6g 6717 . . . . . 6 (𝑦 ∈ ℕ0 → (1o × {𝑦}):1o⟶ℕ0)
1110adantl 481 . . . . 5 ((𝐹:(ℕ0m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}):1o⟶ℕ0)
12 nn0ex 12408 . . . . . 6 0 ∈ V
13 1oex 8405 . . . . . 6 1o ∈ V
1412, 13elmap 8805 . . . . 5 ((1o × {𝑦}) ∈ (ℕ0m 1o) ↔ (1o × {𝑦}):1o⟶ℕ0)
1511, 14sylibr 234 . . . 4 ((𝐹:(ℕ0m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}) ∈ (ℕ0m 1o))
16 coe1fval3.g . . . . 5 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))
1716a1i 11 . . . 4 (𝐹:(ℕ0m 1o)⟶V → 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})))
18 id 22 . . . . 5 (𝐹:(ℕ0m 1o)⟶V → 𝐹:(ℕ0m 1o)⟶V)
1918feqmptd 6895 . . . 4 (𝐹:(ℕ0m 1o)⟶V → 𝐹 = (𝑥 ∈ (ℕ0m 1o) ↦ (𝐹𝑥)))
20 fveq2 6826 . . . 4 (𝑥 = (1o × {𝑦}) → (𝐹𝑥) = (𝐹‘(1o × {𝑦})))
2115, 17, 19, 20fmptco 7067 . . 3 (𝐹:(ℕ0m 1o)⟶V → (𝐹𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦}))))
229, 21syl 17 . 2 (𝐹𝐵 → (𝐹𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦}))))
232, 22eqtr4d 2767 1 (𝐹𝐵𝐴 = (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  wss 3905  {csn 4579  cmpt 5176   × cxp 5621  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  1oc1o 8388  m cmap 8760  0cn0 12402  Basecbs 17138  PwSer1cps1 22075  coe1cco1 22078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-tset 17198  df-ple 17199  df-psr 21834  df-opsr 21838  df-psr1 22080  df-coe1 22083
This theorem is referenced by:  coe1f2  22110  coe1fval2  22111  coe1mul2  22171
  Copyright terms: Public domain W3C validator