| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1fval3 | Structured version Visualization version GIF version | ||
| Description: Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
| coe1f2.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1f2.p | ⊢ 𝑃 = (PwSer1‘𝑅) |
| coe1fval3.g | ⊢ 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
| Ref | Expression |
|---|---|
| coe1fval3 | ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
| 2 | 1 | coe1fval 22119 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦})))) |
| 3 | coe1f2.p | . . . . 5 ⊢ 𝑃 = (PwSer1‘𝑅) | |
| 4 | coe1f2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 3, 4, 5 | psr1basf 22115 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶(Base‘𝑅)) |
| 7 | ssv 3959 | . . . 4 ⊢ (Base‘𝑅) ⊆ V | |
| 8 | fss 6667 | . . . 4 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶(Base‘𝑅) ∧ (Base‘𝑅) ⊆ V) → 𝐹:(ℕ0 ↑m 1o)⟶V) | |
| 9 | 6, 7, 8 | sylancl 586 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶V) |
| 10 | fconst6g 6712 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0 → (1o × {𝑦}):1o⟶ℕ0) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}):1o⟶ℕ0) |
| 12 | nn0ex 12387 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 13 | 1oex 8395 | . . . . . 6 ⊢ 1o ∈ V | |
| 14 | 12, 13 | elmap 8795 | . . . . 5 ⊢ ((1o × {𝑦}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {𝑦}):1o⟶ℕ0) |
| 15 | 11, 14 | sylibr 234 | . . . 4 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}) ∈ (ℕ0 ↑m 1o)) |
| 16 | coe1fval3.g | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) | |
| 17 | 16 | a1i 11 | . . . 4 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))) |
| 18 | id 22 | . . . . 5 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → 𝐹:(ℕ0 ↑m 1o)⟶V) | |
| 19 | 18 | feqmptd 6890 | . . . 4 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → 𝐹 = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝐹‘𝑥))) |
| 20 | fveq2 6822 | . . . 4 ⊢ (𝑥 = (1o × {𝑦}) → (𝐹‘𝑥) = (𝐹‘(1o × {𝑦}))) | |
| 21 | 15, 17, 19, 20 | fmptco 7062 | . . 3 ⊢ (𝐹:(ℕ0 ↑m 1o)⟶V → (𝐹 ∘ 𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦})))) |
| 22 | 9, 21 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ 𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦})))) |
| 23 | 2, 22 | eqtr4d 2769 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 {csn 4576 ↦ cmpt 5172 × cxp 5614 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ↑m cmap 8750 ℕ0cn0 12381 Basecbs 17120 PwSer1cps1 22088 coe1cco1 22091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-tset 17180 df-ple 17181 df-psr 21847 df-opsr 21851 df-psr1 22093 df-coe1 22096 |
| This theorem is referenced by: coe1f2 22123 coe1fval2 22124 coe1mul2 22184 |
| Copyright terms: Public domain | W3C validator |