![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1fval3 | Structured version Visualization version GIF version |
Description: Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
coe1fval.a | β’ π΄ = (coe1βπΉ) |
coe1f2.b | β’ π΅ = (Baseβπ) |
coe1f2.p | β’ π = (PwSer1βπ ) |
coe1fval3.g | β’ πΊ = (π¦ β β0 β¦ (1o Γ {π¦})) |
Ref | Expression |
---|---|
coe1fval3 | β’ (πΉ β π΅ β π΄ = (πΉ β πΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1fval.a | . . 3 β’ π΄ = (coe1βπΉ) | |
2 | 1 | coe1fval 21720 | . 2 β’ (πΉ β π΅ β π΄ = (π¦ β β0 β¦ (πΉβ(1o Γ {π¦})))) |
3 | coe1f2.p | . . . . 5 β’ π = (PwSer1βπ ) | |
4 | coe1f2.b | . . . . 5 β’ π΅ = (Baseβπ) | |
5 | eqid 2732 | . . . . 5 β’ (Baseβπ ) = (Baseβπ ) | |
6 | 3, 4, 5 | psr1basf 21716 | . . . 4 β’ (πΉ β π΅ β πΉ:(β0 βm 1o)βΆ(Baseβπ )) |
7 | ssv 4005 | . . . 4 β’ (Baseβπ ) β V | |
8 | fss 6731 | . . . 4 β’ ((πΉ:(β0 βm 1o)βΆ(Baseβπ ) β§ (Baseβπ ) β V) β πΉ:(β0 βm 1o)βΆV) | |
9 | 6, 7, 8 | sylancl 586 | . . 3 β’ (πΉ β π΅ β πΉ:(β0 βm 1o)βΆV) |
10 | fconst6g 6777 | . . . . . 6 β’ (π¦ β β0 β (1o Γ {π¦}):1oβΆβ0) | |
11 | 10 | adantl 482 | . . . . 5 β’ ((πΉ:(β0 βm 1o)βΆV β§ π¦ β β0) β (1o Γ {π¦}):1oβΆβ0) |
12 | nn0ex 12474 | . . . . . 6 β’ β0 β V | |
13 | 1oex 8472 | . . . . . 6 β’ 1o β V | |
14 | 12, 13 | elmap 8861 | . . . . 5 β’ ((1o Γ {π¦}) β (β0 βm 1o) β (1o Γ {π¦}):1oβΆβ0) |
15 | 11, 14 | sylibr 233 | . . . 4 β’ ((πΉ:(β0 βm 1o)βΆV β§ π¦ β β0) β (1o Γ {π¦}) β (β0 βm 1o)) |
16 | coe1fval3.g | . . . . 5 β’ πΊ = (π¦ β β0 β¦ (1o Γ {π¦})) | |
17 | 16 | a1i 11 | . . . 4 β’ (πΉ:(β0 βm 1o)βΆV β πΊ = (π¦ β β0 β¦ (1o Γ {π¦}))) |
18 | id 22 | . . . . 5 β’ (πΉ:(β0 βm 1o)βΆV β πΉ:(β0 βm 1o)βΆV) | |
19 | 18 | feqmptd 6957 | . . . 4 β’ (πΉ:(β0 βm 1o)βΆV β πΉ = (π₯ β (β0 βm 1o) β¦ (πΉβπ₯))) |
20 | fveq2 6888 | . . . 4 β’ (π₯ = (1o Γ {π¦}) β (πΉβπ₯) = (πΉβ(1o Γ {π¦}))) | |
21 | 15, 17, 19, 20 | fmptco 7123 | . . 3 β’ (πΉ:(β0 βm 1o)βΆV β (πΉ β πΊ) = (π¦ β β0 β¦ (πΉβ(1o Γ {π¦})))) |
22 | 9, 21 | syl 17 | . 2 β’ (πΉ β π΅ β (πΉ β πΊ) = (π¦ β β0 β¦ (πΉβ(1o Γ {π¦})))) |
23 | 2, 22 | eqtr4d 2775 | 1 β’ (πΉ β π΅ β π΄ = (πΉ β πΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3947 {csn 4627 β¦ cmpt 5230 Γ cxp 5673 β ccom 5679 βΆwf 6536 βcfv 6540 (class class class)co 7405 1oc1o 8455 βm cmap 8816 β0cn0 12468 Basecbs 17140 PwSer1cps1 21690 coe1cco1 21693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-tset 17212 df-ple 17213 df-psr 21453 df-opsr 21457 df-psr1 21695 df-coe1 21698 |
This theorem is referenced by: coe1f2 21724 coe1fval2 21725 coe1mul2 21782 |
Copyright terms: Public domain | W3C validator |