MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fval3 Structured version   Visualization version   GIF version

Theorem coe1fval3 20976
Description: Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
coe1f2.b 𝐵 = (Base‘𝑃)
coe1f2.p 𝑃 = (PwSer1𝑅)
coe1fval3.g 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))
Assertion
Ref Expression
coe1fval3 (𝐹𝐵𝐴 = (𝐹𝐺))
Distinct variable group:   𝑦,𝐹
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝑃(𝑦)   𝑅(𝑦)   𝐺(𝑦)

Proof of Theorem coe1fval3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coe1fval.a . . 3 𝐴 = (coe1𝐹)
21coe1fval 20973 . 2 (𝐹𝐵𝐴 = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦}))))
3 coe1f2.p . . . . 5 𝑃 = (PwSer1𝑅)
4 coe1f2.b . . . . 5 𝐵 = (Base‘𝑃)
5 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
63, 4, 5psr1basf 20969 . . . 4 (𝐹𝐵𝐹:(ℕ0m 1o)⟶(Base‘𝑅))
7 ssv 3899 . . . 4 (Base‘𝑅) ⊆ V
8 fss 6515 . . . 4 ((𝐹:(ℕ0m 1o)⟶(Base‘𝑅) ∧ (Base‘𝑅) ⊆ V) → 𝐹:(ℕ0m 1o)⟶V)
96, 7, 8sylancl 589 . . 3 (𝐹𝐵𝐹:(ℕ0m 1o)⟶V)
10 fconst6g 6561 . . . . . 6 (𝑦 ∈ ℕ0 → (1o × {𝑦}):1o⟶ℕ0)
1110adantl 485 . . . . 5 ((𝐹:(ℕ0m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}):1o⟶ℕ0)
12 nn0ex 11975 . . . . . 6 0 ∈ V
13 1oex 8137 . . . . . 6 1o ∈ V
1412, 13elmap 8474 . . . . 5 ((1o × {𝑦}) ∈ (ℕ0m 1o) ↔ (1o × {𝑦}):1o⟶ℕ0)
1511, 14sylibr 237 . . . 4 ((𝐹:(ℕ0m 1o)⟶V ∧ 𝑦 ∈ ℕ0) → (1o × {𝑦}) ∈ (ℕ0m 1o))
16 coe1fval3.g . . . . 5 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))
1716a1i 11 . . . 4 (𝐹:(ℕ0m 1o)⟶V → 𝐺 = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})))
18 id 22 . . . . 5 (𝐹:(ℕ0m 1o)⟶V → 𝐹:(ℕ0m 1o)⟶V)
1918feqmptd 6731 . . . 4 (𝐹:(ℕ0m 1o)⟶V → 𝐹 = (𝑥 ∈ (ℕ0m 1o) ↦ (𝐹𝑥)))
20 fveq2 6668 . . . 4 (𝑥 = (1o × {𝑦}) → (𝐹𝑥) = (𝐹‘(1o × {𝑦})))
2115, 17, 19, 20fmptco 6895 . . 3 (𝐹:(ℕ0m 1o)⟶V → (𝐹𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦}))))
229, 21syl 17 . 2 (𝐹𝐵 → (𝐹𝐺) = (𝑦 ∈ ℕ0 ↦ (𝐹‘(1o × {𝑦}))))
232, 22eqtr4d 2776 1 (𝐹𝐵𝐴 = (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  Vcvv 3397  wss 3841  {csn 4513  cmpt 5107   × cxp 5517  ccom 5523  wf 6329  cfv 6333  (class class class)co 7164  1oc1o 8117  m cmap 8430  0cn0 11969  Basecbs 16579  PwSer1cps1 20943  coe1cco1 20946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-of 7419  df-om 7594  df-1st 7707  df-2nd 7708  df-supp 7850  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-fsupp 8900  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-fz 12975  df-struct 16581  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-plusg 16674  df-mulr 16675  df-sca 16677  df-vsca 16678  df-tset 16680  df-ple 16681  df-psr 20715  df-opsr 20719  df-psr1 20948  df-coe1 20951
This theorem is referenced by:  coe1f2  20977  coe1fval2  20978  coe1mul2  21037
  Copyright terms: Public domain W3C validator