MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcjbr Structured version   Visualization version   GIF version

Theorem dvcjbr 25860
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 25861. (This doesn't follow from dvcobr 25856 because is not a function on the reals, and even if we used complex derivatives, is not complex-differentiable.) (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f (𝜑𝐹:𝑋⟶ℂ)
dvcj.x (𝜑𝑋 ⊆ ℝ)
dvcj.c (𝜑𝐶 ∈ dom (ℝ D 𝐹))
Assertion
Ref Expression
dvcjbr (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))

Proof of Theorem dvcjbr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-resscn 11132 . . . . 5 ℝ ⊆ ℂ
21a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3 dvcj.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
4 dvcj.x . . . 4 (𝜑𝑋 ⊆ ℝ)
5 tgioo4 24700 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6 eqid 2730 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
72, 3, 4, 5, 6dvbssntr 25808 . . 3 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
8 dvcj.c . . 3 (𝜑𝐶 ∈ dom (ℝ D 𝐹))
97, 8sseldd 3950 . 2 (𝜑𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋))
104, 1sstrdi 3962 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
111a1i 11 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ℝ ⊆ ℂ)
12 simpl 482 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
13 simpr 484 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ)
1411, 12, 13dvbss 25809 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D 𝐹) ⊆ 𝑋)
153, 4, 14syl2anc 584 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝑋)
1615, 8sseldd 3950 . . . . . 6 (𝜑𝐶𝑋)
173, 10, 16dvlem 25804 . . . . 5 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)) ∈ ℂ)
1817fmpttd 7090 . . . 4 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))):(𝑋 ∖ {𝐶})⟶ℂ)
19 ssidd 3973 . . . 4 (𝜑 → ℂ ⊆ ℂ)
206cnfldtopon 24677 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2120toponrestid 22815 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
22 dvf 25815 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
23 ffun 6694 . . . . . . . 8 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
24 funfvbrb 7026 . . . . . . . 8 (Fun (ℝ D 𝐹) → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
2522, 23, 24mp2b 10 . . . . . . 7 (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
268, 25sylib 218 . . . . . 6 (𝜑𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
27 eqid 2730 . . . . . . 7 (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))
285, 6, 27, 2, 3, 4eldv 25806 . . . . . 6 (𝜑 → (𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))))
2926, 28mpbid 232 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶)))
3029simprd 495 . . . 4 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))
31 cjcncf 24804 . . . . . 6 ∗ ∈ (ℂ–cn→ℂ)
326cncfcn1 24811 . . . . . 6 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3331, 32eleqtri 2827 . . . . 5 ∗ ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3422ffvelcdmi 7058 . . . . . 6 (𝐶 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
358, 34syl 17 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
36 unicntop 24680 . . . . . 6 ℂ = (TopOpen‘ℂfld)
3736cncnpi 23172 . . . . 5 ((∗ ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ℂ) → ∗ ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((ℝ D 𝐹)‘𝐶)))
3833, 35, 37sylancr 587 . . . 4 (𝜑 → ∗ ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((ℝ D 𝐹)‘𝐶)))
3918, 19, 6, 21, 30, 38limccnp 25799 . . 3 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶))
40 cjf 15077 . . . . . . 7 ∗:ℂ⟶ℂ
4140a1i 11 . . . . . 6 (𝜑 → ∗:ℂ⟶ℂ)
4241, 17cofmpt 7107 . . . . 5 (𝜑 → (∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))))
433adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐹:𝑋⟶ℂ)
44 eldifi 4097 . . . . . . . . . . 11 (𝑥 ∈ (𝑋 ∖ {𝐶}) → 𝑥𝑋)
4544adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥𝑋)
4643, 45ffvelcdmd 7060 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝑥) ∈ ℂ)
473, 16ffvelcdmd 7060 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
4847adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
4946, 48subcld 11540 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑥) − (𝐹𝐶)) ∈ ℂ)
504sselda 3949 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℝ)
5144, 50sylan2 593 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ∈ ℝ)
524, 16sseldd 3950 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
5352adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℝ)
5451, 53resubcld 11613 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ∈ ℝ)
5554recnd 11209 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ∈ ℂ)
5651recnd 11209 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ∈ ℂ)
5753recnd 11209 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℂ)
58 eldifsni 4757 . . . . . . . . . 10 (𝑥 ∈ (𝑋 ∖ {𝐶}) → 𝑥𝐶)
5958adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥𝐶)
6056, 57, 59subne0d 11549 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ≠ 0)
6149, 55, 60cjdivd 15196 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))))
62 cjsub 15122 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
6346, 48, 62syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
64 fvco3 6963 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
653, 44, 64syl2an 596 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
66 fvco3 6963 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝐶𝑋) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
673, 16, 66syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
6867adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
6965, 68oveq12d 7408 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
7063, 69eqtr4d 2768 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)))
7154cjred 15199 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(𝑥𝐶)) = (𝑥𝐶))
7270, 71oveq12d 7408 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
7361, 72eqtrd 2765 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
7473mpteq2dva 5203 . . . . 5 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
7542, 74eqtrd 2765 . . . 4 (𝜑 → (∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
7675oveq1d 7405 . . 3 (𝜑 → ((∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶) = ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
7739, 76eleqtrd 2831 . 2 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
78 eqid 2730 . . 3 (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
79 fco 6715 . . . 4 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
8040, 3, 79sylancr 587 . . 3 (𝜑 → (∗ ∘ 𝐹):𝑋⟶ℂ)
815, 6, 78, 2, 80, 4eldv 25806 . 2 (𝜑 → (𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))))
829, 77, 81mpbir2and 713 1 (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  ccom 5645  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  cmin 11412   / cdiv 11842  (,)cioo 13313  ccj 15069  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  intcnt 22911   Cn ccn 23118   CnP ccnp 23119  cnccncf 24776   lim climc 25770   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-icc 13320  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  dvcj  25861
  Copyright terms: Public domain W3C validator