MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcjbr Structured version   Visualization version   GIF version

Theorem dvcjbr 25887
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 25888. (This doesn't follow from dvcobr 25883 because is not a function on the reals, and even if we used complex derivatives, is not complex-differentiable.) (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f (𝜑𝐹:𝑋⟶ℂ)
dvcj.x (𝜑𝑋 ⊆ ℝ)
dvcj.c (𝜑𝐶 ∈ dom (ℝ D 𝐹))
Assertion
Ref Expression
dvcjbr (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))

Proof of Theorem dvcjbr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-resscn 11103 . . . . 5 ℝ ⊆ ℂ
21a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3 dvcj.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
4 dvcj.x . . . 4 (𝜑𝑋 ⊆ ℝ)
5 tgioo4 24727 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6 eqid 2729 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
72, 3, 4, 5, 6dvbssntr 25835 . . 3 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
8 dvcj.c . . 3 (𝜑𝐶 ∈ dom (ℝ D 𝐹))
97, 8sseldd 3944 . 2 (𝜑𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋))
104, 1sstrdi 3956 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
111a1i 11 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ℝ ⊆ ℂ)
12 simpl 482 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
13 simpr 484 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ)
1411, 12, 13dvbss 25836 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D 𝐹) ⊆ 𝑋)
153, 4, 14syl2anc 584 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝑋)
1615, 8sseldd 3944 . . . . . 6 (𝜑𝐶𝑋)
173, 10, 16dvlem 25831 . . . . 5 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)) ∈ ℂ)
1817fmpttd 7069 . . . 4 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))):(𝑋 ∖ {𝐶})⟶ℂ)
19 ssidd 3967 . . . 4 (𝜑 → ℂ ⊆ ℂ)
206cnfldtopon 24704 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2120toponrestid 22842 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
22 dvf 25842 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
23 ffun 6673 . . . . . . . 8 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
24 funfvbrb 7005 . . . . . . . 8 (Fun (ℝ D 𝐹) → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
2522, 23, 24mp2b 10 . . . . . . 7 (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
268, 25sylib 218 . . . . . 6 (𝜑𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
27 eqid 2729 . . . . . . 7 (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))
285, 6, 27, 2, 3, 4eldv 25833 . . . . . 6 (𝜑 → (𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))))
2926, 28mpbid 232 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶)))
3029simprd 495 . . . 4 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))
31 cjcncf 24831 . . . . . 6 ∗ ∈ (ℂ–cn→ℂ)
326cncfcn1 24838 . . . . . 6 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3331, 32eleqtri 2826 . . . . 5 ∗ ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3422ffvelcdmi 7037 . . . . . 6 (𝐶 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
358, 34syl 17 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
36 unicntop 24707 . . . . . 6 ℂ = (TopOpen‘ℂfld)
3736cncnpi 23199 . . . . 5 ((∗ ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ℂ) → ∗ ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((ℝ D 𝐹)‘𝐶)))
3833, 35, 37sylancr 587 . . . 4 (𝜑 → ∗ ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((ℝ D 𝐹)‘𝐶)))
3918, 19, 6, 21, 30, 38limccnp 25826 . . 3 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶))
40 cjf 15047 . . . . . . 7 ∗:ℂ⟶ℂ
4140a1i 11 . . . . . 6 (𝜑 → ∗:ℂ⟶ℂ)
4241, 17cofmpt 7086 . . . . 5 (𝜑 → (∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))))
433adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐹:𝑋⟶ℂ)
44 eldifi 4090 . . . . . . . . . . 11 (𝑥 ∈ (𝑋 ∖ {𝐶}) → 𝑥𝑋)
4544adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥𝑋)
4643, 45ffvelcdmd 7039 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝑥) ∈ ℂ)
473, 16ffvelcdmd 7039 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
4847adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
4946, 48subcld 11511 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑥) − (𝐹𝐶)) ∈ ℂ)
504sselda 3943 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℝ)
5144, 50sylan2 593 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ∈ ℝ)
524, 16sseldd 3944 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
5352adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℝ)
5451, 53resubcld 11584 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ∈ ℝ)
5554recnd 11180 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ∈ ℂ)
5651recnd 11180 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ∈ ℂ)
5753recnd 11180 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℂ)
58 eldifsni 4750 . . . . . . . . . 10 (𝑥 ∈ (𝑋 ∖ {𝐶}) → 𝑥𝐶)
5958adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥𝐶)
6056, 57, 59subne0d 11520 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ≠ 0)
6149, 55, 60cjdivd 15166 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))))
62 cjsub 15092 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
6346, 48, 62syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
64 fvco3 6942 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
653, 44, 64syl2an 596 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
66 fvco3 6942 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝐶𝑋) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
673, 16, 66syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
6867adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
6965, 68oveq12d 7387 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
7063, 69eqtr4d 2767 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)))
7154cjred 15169 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(𝑥𝐶)) = (𝑥𝐶))
7270, 71oveq12d 7387 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
7361, 72eqtrd 2764 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
7473mpteq2dva 5195 . . . . 5 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
7542, 74eqtrd 2764 . . . 4 (𝜑 → (∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
7675oveq1d 7384 . . 3 (𝜑 → ((∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶) = ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
7739, 76eleqtrd 2830 . 2 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
78 eqid 2729 . . 3 (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
79 fco 6694 . . . 4 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
8040, 3, 79sylancr 587 . . 3 (𝜑 → (∗ ∘ 𝐹):𝑋⟶ℂ)
815, 6, 78, 2, 80, 4eldv 25833 . 2 (𝜑 → (𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))))
829, 77, 81mpbir2and 713 1 (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3908  wss 3911  {csn 4585   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  ccom 5635  Fun wfun 6493  wf 6495  cfv 6499  (class class class)co 7369  cc 11044  cr 11045  cmin 11383   / cdiv 11813  (,)cioo 13284  ccj 15039  TopOpenctopn 17361  topGenctg 17377  fldccnfld 21297  intcnt 22938   Cn ccn 23145   CnP ccnp 23146  cnccncf 24803   lim climc 25797   D cdv 25798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-icc 13291  df-fz 13447  df-seq 13945  df-exp 14005  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17094  df-slot 17129  df-ndx 17141  df-base 17157  df-plusg 17210  df-mulr 17211  df-starv 17212  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-rest 17362  df-topn 17363  df-topgen 17383  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24242  df-ms 24243  df-cncf 24805  df-limc 25801  df-dv 25802
This theorem is referenced by:  dvcj  25888
  Copyright terms: Public domain W3C validator