MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcjbr Structured version   Visualization version   GIF version

Theorem dvcjbr 26007
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 26008. (This doesn't follow from dvcobr 26003 because is not a function on the reals, and even if we used complex derivatives, is not complex-differentiable.) (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f (𝜑𝐹:𝑋⟶ℂ)
dvcj.x (𝜑𝑋 ⊆ ℝ)
dvcj.c (𝜑𝐶 ∈ dom (ℝ D 𝐹))
Assertion
Ref Expression
dvcjbr (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))

Proof of Theorem dvcjbr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-resscn 11241 . . . . 5 ℝ ⊆ ℂ
21a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3 dvcj.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
4 dvcj.x . . . 4 (𝜑𝑋 ⊆ ℝ)
5 eqid 2740 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
65tgioo2 24844 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
72, 3, 4, 6, 5dvbssntr 25955 . . 3 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
8 dvcj.c . . 3 (𝜑𝐶 ∈ dom (ℝ D 𝐹))
97, 8sseldd 4009 . 2 (𝜑𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋))
104, 1sstrdi 4021 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
111a1i 11 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ℝ ⊆ ℂ)
12 simpl 482 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
13 simpr 484 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ)
1411, 12, 13dvbss 25956 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D 𝐹) ⊆ 𝑋)
153, 4, 14syl2anc 583 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝑋)
1615, 8sseldd 4009 . . . . . 6 (𝜑𝐶𝑋)
173, 10, 16dvlem 25951 . . . . 5 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)) ∈ ℂ)
1817fmpttd 7149 . . . 4 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))):(𝑋 ∖ {𝐶})⟶ℂ)
19 ssidd 4032 . . . 4 (𝜑 → ℂ ⊆ ℂ)
205cnfldtopon 24824 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2120toponrestid 22948 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
22 dvf 25962 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
23 ffun 6750 . . . . . . . 8 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
24 funfvbrb 7084 . . . . . . . 8 (Fun (ℝ D 𝐹) → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
2522, 23, 24mp2b 10 . . . . . . 7 (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
268, 25sylib 218 . . . . . 6 (𝜑𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
27 eqid 2740 . . . . . . 7 (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))
286, 5, 27, 2, 3, 4eldv 25953 . . . . . 6 (𝜑 → (𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))))
2926, 28mpbid 232 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶)))
3029simprd 495 . . . 4 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))
31 cjcncf 24949 . . . . . 6 ∗ ∈ (ℂ–cn→ℂ)
325cncfcn1 24956 . . . . . 6 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3331, 32eleqtri 2842 . . . . 5 ∗ ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3422ffvelcdmi 7117 . . . . . 6 (𝐶 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
358, 34syl 17 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
36 unicntop 24827 . . . . . 6 ℂ = (TopOpen‘ℂfld)
3736cncnpi 23307 . . . . 5 ((∗ ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ℂ) → ∗ ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((ℝ D 𝐹)‘𝐶)))
3833, 35, 37sylancr 586 . . . 4 (𝜑 → ∗ ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((ℝ D 𝐹)‘𝐶)))
3918, 19, 5, 21, 30, 38limccnp 25946 . . 3 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶))
40 cjf 15153 . . . . . . 7 ∗:ℂ⟶ℂ
4140a1i 11 . . . . . 6 (𝜑 → ∗:ℂ⟶ℂ)
4241, 17cofmpt 7166 . . . . 5 (𝜑 → (∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))))
433adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐹:𝑋⟶ℂ)
44 eldifi 4154 . . . . . . . . . . 11 (𝑥 ∈ (𝑋 ∖ {𝐶}) → 𝑥𝑋)
4544adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥𝑋)
4643, 45ffvelcdmd 7119 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝑥) ∈ ℂ)
473, 16ffvelcdmd 7119 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
4847adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
4946, 48subcld 11647 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑥) − (𝐹𝐶)) ∈ ℂ)
504sselda 4008 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℝ)
5144, 50sylan2 592 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ∈ ℝ)
524, 16sseldd 4009 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
5352adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℝ)
5451, 53resubcld 11718 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ∈ ℝ)
5554recnd 11318 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ∈ ℂ)
5651recnd 11318 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ∈ ℂ)
5753recnd 11318 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℂ)
58 eldifsni 4815 . . . . . . . . . 10 (𝑥 ∈ (𝑋 ∖ {𝐶}) → 𝑥𝐶)
5958adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥𝐶)
6056, 57, 59subne0d 11656 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ≠ 0)
6149, 55, 60cjdivd 15272 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))))
62 cjsub 15198 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
6346, 48, 62syl2anc 583 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
64 fvco3 7021 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
653, 44, 64syl2an 595 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
66 fvco3 7021 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝐶𝑋) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
673, 16, 66syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
6867adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
6965, 68oveq12d 7466 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
7063, 69eqtr4d 2783 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)))
7154cjred 15275 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(𝑥𝐶)) = (𝑥𝐶))
7270, 71oveq12d 7466 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
7361, 72eqtrd 2780 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
7473mpteq2dva 5266 . . . . 5 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
7542, 74eqtrd 2780 . . . 4 (𝜑 → (∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
7675oveq1d 7463 . . 3 (𝜑 → ((∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶) = ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
7739, 76eleqtrd 2846 . 2 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
78 eqid 2740 . . 3 (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
79 fco 6771 . . . 4 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
8040, 3, 79sylancr 586 . . 3 (𝜑 → (∗ ∘ 𝐹):𝑋⟶ℂ)
816, 5, 78, 2, 80, 4eldv 25953 . 2 (𝜑 → (𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))))
829, 77, 81mpbir2and 712 1 (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  ccom 5704  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  cmin 11520   / cdiv 11947  (,)cioo 13407  ccj 15145  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387  intcnt 23046   Cn ccn 23253   CnP ccnp 23254  cnccncf 24921   lim climc 25917   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  dvcj  26008
  Copyright terms: Public domain W3C validator