MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcjbr Structured version   Visualization version   GIF version

Theorem dvcjbr 25447
Description: The derivative of the conjugate of a function. For the (simpler but more limited) function version, see dvcj 25448. (This doesn't follow from dvcobr 25444 because is not a function on the reals, and even if we used complex derivatives, is not complex-differentiable.) (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcj.f (𝜑𝐹:𝑋⟶ℂ)
dvcj.x (𝜑𝑋 ⊆ ℝ)
dvcj.c (𝜑𝐶 ∈ dom (ℝ D 𝐹))
Assertion
Ref Expression
dvcjbr (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))

Proof of Theorem dvcjbr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-resscn 11162 . . . . 5 ℝ ⊆ ℂ
21a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3 dvcj.f . . . 4 (𝜑𝐹:𝑋⟶ℂ)
4 dvcj.x . . . 4 (𝜑𝑋 ⊆ ℝ)
5 eqid 2733 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
65tgioo2 24300 . . . 4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
72, 3, 4, 6, 5dvbssntr 25398 . . 3 (𝜑 → dom (ℝ D 𝐹) ⊆ ((int‘(topGen‘ran (,)))‘𝑋))
8 dvcj.c . . 3 (𝜑𝐶 ∈ dom (ℝ D 𝐹))
97, 8sseldd 3981 . 2 (𝜑𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋))
104, 1sstrdi 3992 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
111a1i 11 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ℝ ⊆ ℂ)
12 simpl 484 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
13 simpr 486 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝑋 ⊆ ℝ)
1411, 12, 13dvbss 25399 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D 𝐹) ⊆ 𝑋)
153, 4, 14syl2anc 585 . . . . . . 7 (𝜑 → dom (ℝ D 𝐹) ⊆ 𝑋)
1615, 8sseldd 3981 . . . . . 6 (𝜑𝐶𝑋)
173, 10, 16dvlem 25394 . . . . 5 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)) ∈ ℂ)
1817fmpttd 7109 . . . 4 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))):(𝑋 ∖ {𝐶})⟶ℂ)
19 ssidd 4003 . . . 4 (𝜑 → ℂ ⊆ ℂ)
205cnfldtopon 24280 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
2120toponrestid 22404 . . . 4 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
22 dvf 25405 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
23 ffun 6716 . . . . . . . 8 ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ → Fun (ℝ D 𝐹))
24 funfvbrb 7047 . . . . . . . 8 (Fun (ℝ D 𝐹) → (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶)))
2522, 23, 24mp2b 10 . . . . . . 7 (𝐶 ∈ dom (ℝ D 𝐹) ↔ 𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
268, 25sylib 217 . . . . . 6 (𝜑𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶))
27 eqid 2733 . . . . . . 7 (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))
286, 5, 27, 2, 3, 4eldv 25396 . . . . . 6 (𝜑 → (𝐶(ℝ D 𝐹)((ℝ D 𝐹)‘𝐶) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))))
2926, 28mpbid 231 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶)))
3029simprd 497 . . . 4 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) lim 𝐶))
31 cjcncf 24401 . . . . . 6 ∗ ∈ (ℂ–cn→ℂ)
325cncfcn1 24408 . . . . . 6 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3331, 32eleqtri 2832 . . . . 5 ∗ ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3422ffvelcdmi 7080 . . . . . 6 (𝐶 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
358, 34syl 17 . . . . 5 (𝜑 → ((ℝ D 𝐹)‘𝐶) ∈ ℂ)
36 unicntop 24283 . . . . . 6 ℂ = (TopOpen‘ℂfld)
3736cncnpi 22763 . . . . 5 ((∗ ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ((ℝ D 𝐹)‘𝐶) ∈ ℂ) → ∗ ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((ℝ D 𝐹)‘𝐶)))
3833, 35, 37sylancr 588 . . . 4 (𝜑 → ∗ ∈ (((TopOpen‘ℂfld) CnP (TopOpen‘ℂfld))‘((ℝ D 𝐹)‘𝐶)))
3918, 19, 5, 21, 30, 38limccnp 25389 . . 3 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶))
40 cjf 15046 . . . . . . 7 ∗:ℂ⟶ℂ
4140a1i 11 . . . . . 6 (𝜑 → ∗:ℂ⟶ℂ)
4241, 17cofmpt 7124 . . . . 5 (𝜑 → (∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))))
433adantr 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐹:𝑋⟶ℂ)
44 eldifi 4124 . . . . . . . . . . 11 (𝑥 ∈ (𝑋 ∖ {𝐶}) → 𝑥𝑋)
4544adantl 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥𝑋)
4643, 45ffvelcdmd 7082 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝑥) ∈ ℂ)
473, 16ffvelcdmd 7082 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
4847adantr 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
4946, 48subcld 11566 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((𝐹𝑥) − (𝐹𝐶)) ∈ ℂ)
504sselda 3980 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥 ∈ ℝ)
5144, 50sylan2 594 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ∈ ℝ)
524, 16sseldd 3981 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
5352adantr 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℝ)
5451, 53resubcld 11637 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ∈ ℝ)
5554recnd 11237 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ∈ ℂ)
5651recnd 11237 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥 ∈ ℂ)
5753recnd 11237 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝐶 ∈ ℂ)
58 eldifsni 4791 . . . . . . . . . 10 (𝑥 ∈ (𝑋 ∖ {𝐶}) → 𝑥𝐶)
5958adantl 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → 𝑥𝐶)
6056, 57, 59subne0d 11575 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (𝑥𝐶) ≠ 0)
6149, 55, 60cjdivd 15165 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))))
62 cjsub 15091 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℂ ∧ (𝐹𝐶) ∈ ℂ) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
6346, 48, 62syl2anc 585 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
64 fvco3 6985 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
653, 44, 64syl2an 597 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗ ∘ 𝐹)‘𝑥) = (∗‘(𝐹𝑥)))
66 fvco3 6985 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝐶𝑋) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
673, 16, 66syl2anc 585 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
6867adantr 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗ ∘ 𝐹)‘𝐶) = (∗‘(𝐹𝐶)))
6965, 68oveq12d 7421 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) = ((∗‘(𝐹𝑥)) − (∗‘(𝐹𝐶))))
7063, 69eqtr4d 2776 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘((𝐹𝑥) − (𝐹𝐶))) = (((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)))
7154cjred 15168 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(𝑥𝐶)) = (𝑥𝐶))
7270, 71oveq12d 7421 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → ((∗‘((𝐹𝑥) − (𝐹𝐶))) / (∗‘(𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
7361, 72eqtrd 2773 . . . . . 6 ((𝜑𝑥 ∈ (𝑋 ∖ {𝐶})) → (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶))) = ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
7473mpteq2dva 5246 . . . . 5 (𝜑 → (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (∗‘(((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
7542, 74eqtrd 2773 . . . 4 (𝜑 → (∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))))
7675oveq1d 7418 . . 3 (𝜑 → ((∗ ∘ (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑥) − (𝐹𝐶)) / (𝑥𝐶)))) lim 𝐶) = ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
7739, 76eleqtrd 2836 . 2 (𝜑 → (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))
78 eqid 2733 . . 3 (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) = (𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶)))
79 fco 6737 . . . 4 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
8040, 3, 79sylancr 588 . . 3 (𝜑 → (∗ ∘ 𝐹):𝑋⟶ℂ)
816, 5, 78, 2, 80, 4eldv 25396 . 2 (𝜑 → (𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)) ↔ (𝐶 ∈ ((int‘(topGen‘ran (,)))‘𝑋) ∧ (∗‘((ℝ D 𝐹)‘𝐶)) ∈ ((𝑥 ∈ (𝑋 ∖ {𝐶}) ↦ ((((∗ ∘ 𝐹)‘𝑥) − ((∗ ∘ 𝐹)‘𝐶)) / (𝑥𝐶))) lim 𝐶))))
829, 77, 81mpbir2and 712 1 (𝜑𝐶(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  cdif 3943  wss 3946  {csn 4626   class class class wbr 5146  cmpt 5229  dom cdm 5674  ran crn 5675  ccom 5678  Fun wfun 6533  wf 6535  cfv 6539  (class class class)co 7403  cc 11103  cr 11104  cmin 11439   / cdiv 11866  (,)cioo 13319  ccj 15038  TopOpenctopn 17362  topGenctg 17378  fldccnfld 20928  intcnt 22502   Cn ccn 22709   CnP ccnp 22710  cnccncf 24373   lim climc 25360   D cdv 25361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-iin 4998  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-er 8698  df-map 8817  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fi 9401  df-sup 9432  df-inf 9433  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-2 12270  df-3 12271  df-4 12272  df-5 12273  df-6 12274  df-7 12275  df-8 12276  df-9 12277  df-n0 12468  df-z 12554  df-dec 12673  df-uz 12818  df-q 12928  df-rp 12970  df-xneg 13087  df-xadd 13088  df-xmul 13089  df-ioo 13323  df-icc 13326  df-fz 13480  df-seq 13962  df-exp 14023  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17075  df-slot 17110  df-ndx 17122  df-base 17140  df-plusg 17205  df-mulr 17206  df-starv 17207  df-tset 17211  df-ple 17212  df-ds 17214  df-unif 17215  df-rest 17363  df-topn 17364  df-topgen 17384  df-psmet 20920  df-xmet 20921  df-met 20922  df-bl 20923  df-mopn 20924  df-fbas 20925  df-fg 20926  df-cnfld 20929  df-top 22377  df-topon 22394  df-topsp 22416  df-bases 22430  df-cld 22504  df-ntr 22505  df-cls 22506  df-nei 22583  df-lp 22621  df-perf 22622  df-cn 22712  df-cnp 22713  df-haus 22800  df-fil 23331  df-fm 23423  df-flim 23424  df-flf 23425  df-xms 23807  df-ms 23808  df-cncf 24375  df-limc 25364  df-dv 25365
This theorem is referenced by:  dvcj  25448
  Copyright terms: Public domain W3C validator