| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptcj | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptcj.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptcj.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
| dvmptcj.da | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| Ref | Expression |
|---|---|
| dvmptcj | ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptcj.a | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 2 | 1 | fmpttd 7105 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 3 | dvmptcj.da | . . . . . 6 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 4 | 3 | dmeqd 5885 | . . . . 5 ⊢ (𝜑 → dom (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 5 | dvmptcj.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
| 6 | 5 | ralrimiva 3132 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
| 7 | dmmptg 6231 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
| 9 | 4, 8 | eqtrd 2770 | . . . 4 ⊢ (𝜑 → dom (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
| 10 | dvbsss 25855 | . . . 4 ⊢ dom (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)) ⊆ ℝ | |
| 11 | 9, 10 | eqsstrrdi 4004 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ℝ) |
| 12 | dvcj 25906 | . . 3 ⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (∗ ∘ (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)))) | |
| 13 | 2, 11, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → (ℝ D (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (∗ ∘ (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴)))) |
| 14 | cjf 15123 | . . . . 5 ⊢ ∗:ℂ⟶ℂ | |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → ∗:ℂ⟶ℂ) |
| 16 | 15, 1 | cofmpt 7122 | . . 3 ⊢ (𝜑 → (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) |
| 17 | 16 | oveq2d 7421 | . 2 ⊢ (𝜑 → (ℝ D (∗ ∘ (𝑥 ∈ 𝑋 ↦ 𝐴))) = (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴)))) |
| 18 | reelprrecn 11221 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) |
| 20 | 19, 1, 5, 3 | dvmptcl 25915 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 21 | 15 | feqmptd 6947 | . . 3 ⊢ (𝜑 → ∗ = (𝑦 ∈ ℂ ↦ (∗‘𝑦))) |
| 22 | fveq2 6876 | . . 3 ⊢ (𝑦 = 𝐵 → (∗‘𝑦) = (∗‘𝐵)) | |
| 23 | 20, 3, 21, 22 | fmptco 7119 | . 2 ⊢ (𝜑 → (∗ ∘ (ℝ D (𝑥 ∈ 𝑋 ↦ 𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
| 24 | 13, 17, 23 | 3eqtr3d 2778 | 1 ⊢ (𝜑 → (ℝ D (𝑥 ∈ 𝑋 ↦ (∗‘𝐴))) = (𝑥 ∈ 𝑋 ↦ (∗‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 {cpr 4603 ↦ cmpt 5201 dom cdm 5654 ∘ ccom 5658 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 ∗ccj 15115 D cdv 25816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-icc 13369 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-starv 17286 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-rest 17436 df-topn 17437 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lp 23074 df-perf 23075 df-cn 23165 df-cnp 23166 df-haus 23253 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-cncf 24822 df-limc 25819 df-dv 25820 |
| This theorem is referenced by: dvmptre 25925 dvmptim 25926 |
| Copyright terms: Public domain | W3C validator |