![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvmptcj | Structured version Visualization version GIF version |
Description: Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvmptcj.a | β’ ((π β§ π₯ β π) β π΄ β β) |
dvmptcj.b | β’ ((π β§ π₯ β π) β π΅ β π) |
dvmptcj.da | β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) |
Ref | Expression |
---|---|
dvmptcj | β’ (π β (β D (π₯ β π β¦ (ββπ΄))) = (π₯ β π β¦ (ββπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvmptcj.a | . . . 4 β’ ((π β§ π₯ β π) β π΄ β β) | |
2 | 1 | fmpttd 7106 | . . 3 β’ (π β (π₯ β π β¦ π΄):πβΆβ) |
3 | dvmptcj.da | . . . . . 6 β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) | |
4 | 3 | dmeqd 5895 | . . . . 5 β’ (π β dom (β D (π₯ β π β¦ π΄)) = dom (π₯ β π β¦ π΅)) |
5 | dvmptcj.b | . . . . . . 7 β’ ((π β§ π₯ β π) β π΅ β π) | |
6 | 5 | ralrimiva 3138 | . . . . . 6 β’ (π β βπ₯ β π π΅ β π) |
7 | dmmptg 6231 | . . . . . 6 β’ (βπ₯ β π π΅ β π β dom (π₯ β π β¦ π΅) = π) | |
8 | 6, 7 | syl 17 | . . . . 5 β’ (π β dom (π₯ β π β¦ π΅) = π) |
9 | 4, 8 | eqtrd 2764 | . . . 4 β’ (π β dom (β D (π₯ β π β¦ π΄)) = π) |
10 | dvbsss 25741 | . . . 4 β’ dom (β D (π₯ β π β¦ π΄)) β β | |
11 | 9, 10 | eqsstrrdi 4029 | . . 3 β’ (π β π β β) |
12 | dvcj 25792 | . . 3 β’ (((π₯ β π β¦ π΄):πβΆβ β§ π β β) β (β D (β β (π₯ β π β¦ π΄))) = (β β (β D (π₯ β π β¦ π΄)))) | |
13 | 2, 11, 12 | syl2anc 583 | . 2 β’ (π β (β D (β β (π₯ β π β¦ π΄))) = (β β (β D (π₯ β π β¦ π΄)))) |
14 | cjf 15047 | . . . . 5 β’ β:ββΆβ | |
15 | 14 | a1i 11 | . . . 4 β’ (π β β:ββΆβ) |
16 | 15, 1 | cofmpt 7122 | . . 3 β’ (π β (β β (π₯ β π β¦ π΄)) = (π₯ β π β¦ (ββπ΄))) |
17 | 16 | oveq2d 7417 | . 2 β’ (π β (β D (β β (π₯ β π β¦ π΄))) = (β D (π₯ β π β¦ (ββπ΄)))) |
18 | reelprrecn 11197 | . . . . 5 β’ β β {β, β} | |
19 | 18 | a1i 11 | . . . 4 β’ (π β β β {β, β}) |
20 | 19, 1, 5, 3 | dvmptcl 25801 | . . 3 β’ ((π β§ π₯ β π) β π΅ β β) |
21 | 15 | feqmptd 6950 | . . 3 β’ (π β β = (π¦ β β β¦ (ββπ¦))) |
22 | fveq2 6881 | . . 3 β’ (π¦ = π΅ β (ββπ¦) = (ββπ΅)) | |
23 | 20, 3, 21, 22 | fmptco 7119 | . 2 β’ (π β (β β (β D (π₯ β π β¦ π΄))) = (π₯ β π β¦ (ββπ΅))) |
24 | 13, 17, 23 | 3eqtr3d 2772 | 1 β’ (π β (β D (π₯ β π β¦ (ββπ΄))) = (π₯ β π β¦ (ββπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 β wss 3940 {cpr 4622 β¦ cmpt 5221 dom cdm 5666 β ccom 5670 βΆwf 6529 βcfv 6533 (class class class)co 7401 βcc 11103 βcr 11104 βccj 15039 D cdv 25702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-pm 8818 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fi 9401 df-sup 9432 df-inf 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-icc 13327 df-fz 13481 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-starv 17208 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-rest 17364 df-topn 17365 df-topgen 17385 df-psmet 21215 df-xmet 21216 df-met 21217 df-bl 21218 df-mopn 21219 df-fbas 21220 df-fg 21221 df-cnfld 21224 df-top 22706 df-topon 22723 df-topsp 22745 df-bases 22759 df-cld 22833 df-ntr 22834 df-cls 22835 df-nei 22912 df-lp 22950 df-perf 22951 df-cn 23041 df-cnp 23042 df-haus 23129 df-fil 23660 df-fm 23752 df-flim 23753 df-flf 23754 df-xms 24136 df-ms 24137 df-cncf 24708 df-limc 25705 df-dv 25706 |
This theorem is referenced by: dvmptre 25811 dvmptim 25812 |
Copyright terms: Public domain | W3C validator |