MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptcj Structured version   Visualization version   GIF version

Theorem dvmptcj 26026
Description: Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptcj.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptcj.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptcj.da (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
Assertion
Ref Expression
dvmptcj (𝜑 → (ℝ D (𝑥𝑋 ↦ (∗‘𝐴))) = (𝑥𝑋 ↦ (∗‘𝐵)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem dvmptcj
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvmptcj.a . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
21fmpttd 7149 . . 3 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
3 dvmptcj.da . . . . . 6 (𝜑 → (ℝ D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
43dmeqd 5930 . . . . 5 (𝜑 → dom (ℝ D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
5 dvmptcj.b . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵𝑉)
65ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
7 dmmptg 6273 . . . . . 6 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
86, 7syl 17 . . . . 5 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
94, 8eqtrd 2780 . . . 4 (𝜑 → dom (ℝ D (𝑥𝑋𝐴)) = 𝑋)
10 dvbsss 25957 . . . 4 dom (ℝ D (𝑥𝑋𝐴)) ⊆ ℝ
119, 10eqsstrrdi 4064 . . 3 (𝜑𝑋 ⊆ ℝ)
12 dvcj 26008 . . 3 (((𝑥𝑋𝐴):𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ (𝑥𝑋𝐴))) = (∗ ∘ (ℝ D (𝑥𝑋𝐴))))
132, 11, 12syl2anc 583 . 2 (𝜑 → (ℝ D (∗ ∘ (𝑥𝑋𝐴))) = (∗ ∘ (ℝ D (𝑥𝑋𝐴))))
14 cjf 15153 . . . . 5 ∗:ℂ⟶ℂ
1514a1i 11 . . . 4 (𝜑 → ∗:ℂ⟶ℂ)
1615, 1cofmpt 7166 . . 3 (𝜑 → (∗ ∘ (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ (∗‘𝐴)))
1716oveq2d 7464 . 2 (𝜑 → (ℝ D (∗ ∘ (𝑥𝑋𝐴))) = (ℝ D (𝑥𝑋 ↦ (∗‘𝐴))))
18 reelprrecn 11276 . . . . 5 ℝ ∈ {ℝ, ℂ}
1918a1i 11 . . . 4 (𝜑 → ℝ ∈ {ℝ, ℂ})
2019, 1, 5, 3dvmptcl 26017 . . 3 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
2115feqmptd 6990 . . 3 (𝜑 → ∗ = (𝑦 ∈ ℂ ↦ (∗‘𝑦)))
22 fveq2 6920 . . 3 (𝑦 = 𝐵 → (∗‘𝑦) = (∗‘𝐵))
2320, 3, 21, 22fmptco 7163 . 2 (𝜑 → (∗ ∘ (ℝ D (𝑥𝑋𝐴))) = (𝑥𝑋 ↦ (∗‘𝐵)))
2413, 17, 233eqtr3d 2788 1 (𝜑 → (ℝ D (𝑥𝑋 ↦ (∗‘𝐴))) = (𝑥𝑋 ↦ (∗‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  {cpr 4650  cmpt 5249  dom cdm 5700  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  ccj 15145   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  dvmptre  26027  dvmptim  26028
  Copyright terms: Public domain W3C validator