MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1o12 Structured version   Visualization version   GIF version

Theorem lo1o12 15566
Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (This function is useful for converting theorems about ≤𝑂(1) to 𝑂(1).) (Contributed by Mario Carneiro, 26-May-2016.)
Hypothesis
Ref Expression
lo1o12.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
lo1o12 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem lo1o12
StepHypRef Expression
1 lo1o12.1 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
21fmpttd 7135 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
3 lo1o1 15565 . . 3 ((𝑥𝐴𝐵):𝐴⟶ℂ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (abs ∘ (𝑥𝐴𝐵)) ∈ ≤𝑂(1)))
42, 3syl 17 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (abs ∘ (𝑥𝐴𝐵)) ∈ ≤𝑂(1)))
5 absf 15373 . . . . 5 abs:ℂ⟶ℝ
65a1i 11 . . . 4 (𝜑 → abs:ℂ⟶ℝ)
76, 1cofmpt 7152 . . 3 (𝜑 → (abs ∘ (𝑥𝐴𝐵)) = (𝑥𝐴 ↦ (abs‘𝐵)))
87eleq1d 2824 . 2 (𝜑 → ((abs ∘ (𝑥𝐴𝐵)) ∈ ≤𝑂(1) ↔ (𝑥𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1)))
94, 8bitrd 279 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106  cmpt 5231  ccom 5693  wf 6559  cfv 6563  cc 11151  cr 11152  abscabs 15270  𝑂(1)co1 15519  ≤𝑂(1)clo1 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-o1 15523  df-lo1 15524
This theorem is referenced by:  elo1mpt  15567  elo1mpt2  15568  elo1d  15569  o1bdd2  15574  o1bddrp  15575  o1eq  15603  o1le  15686  pntrlog2bndlem1  27636
  Copyright terms: Public domain W3C validator