MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlog2lem Structured version   Visualization version   GIF version

Theorem dvlog2lem 24921
Description: Lemma for dvlog2 24922. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
dvlog2.s 𝑆 = (1(ball‘(abs ∘ − ))1)
Assertion
Ref Expression
dvlog2lem 𝑆 ⊆ (ℂ ∖ (-∞(,]0))

Proof of Theorem dvlog2lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvlog2.s . . . . 5 𝑆 = (1(ball‘(abs ∘ − ))1)
2 cnxmet 23069 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
3 ax-1cn 10446 . . . . . 6 1 ∈ ℂ
4 1xr 10552 . . . . . 6 1 ∈ ℝ*
5 blssm 22716 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ⊆ ℂ)
62, 3, 4, 5mp3an 1453 . . . . 5 (1(ball‘(abs ∘ − ))1) ⊆ ℂ
71, 6eqsstri 3926 . . . 4 𝑆 ⊆ ℂ
87sseli 3889 . . 3 (𝑥𝑆𝑥 ∈ ℂ)
9 1red 10493 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℝ)
10 cnmet 23068 . . . . . . . 8 (abs ∘ − ) ∈ (Met‘ℂ)
11 mnfxr 10550 . . . . . . . . . . 11 -∞ ∈ ℝ*
12 0re 10494 . . . . . . . . . . 11 0 ∈ ℝ
13 iocssre 12671 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (-∞(,]0) ⊆ ℝ)
1411, 12, 13mp2an 688 . . . . . . . . . 10 (-∞(,]0) ⊆ ℝ
15 ax-resscn 10445 . . . . . . . . . 10 ℝ ⊆ ℂ
1614, 15sstri 3902 . . . . . . . . 9 (-∞(,]0) ⊆ ℂ
1716sseli 3889 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → 𝑥 ∈ ℂ)
18 metcl 22630 . . . . . . . 8 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(abs ∘ − )𝑥) ∈ ℝ)
1910, 3, 17, 18mp3an12i 1457 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) ∈ ℝ)
20 1m0e1 11611 . . . . . . . . 9 (1 − 0) = 1
2114sseli 3889 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ∈ ℝ)
2212a1i 11 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 0 ∈ ℝ)
23 elioc2 12654 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝑥 ∈ (-∞(,]0) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ 0)))
2411, 12, 23mp2an 688 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,]0) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ 0))
2524simp3bi 1140 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ≤ 0)
2621, 22, 9, 25lesub2dd 11110 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (1 − 0) ≤ (1 − 𝑥))
2720, 26eqbrtrrid 5002 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → 1 ≤ (1 − 𝑥))
28 eqid 2795 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
2928cnmetdval 23067 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(abs ∘ − )𝑥) = (abs‘(1 − 𝑥)))
303, 17, 29sylancr 587 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) = (abs‘(1 − 𝑥)))
31 0le1 11016 . . . . . . . . . . . 12 0 ≤ 1
3231a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,]0) → 0 ≤ 1)
3321, 22, 9, 25, 32letrd 10649 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ≤ 1)
3421, 9, 33abssubge0d 14630 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (abs‘(1 − 𝑥)) = (1 − 𝑥))
3530, 34eqtrd 2831 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) = (1 − 𝑥))
3627, 35breqtrrd 4994 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ≤ (1(abs ∘ − )𝑥))
379, 19, 36lensymd 10643 . . . . . 6 (𝑥 ∈ (-∞(,]0) → ¬ (1(abs ∘ − )𝑥) < 1)
382a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → (abs ∘ − ) ∈ (∞Met‘ℂ))
394a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℝ*)
403a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℂ)
41 elbl2 22688 . . . . . . 7 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )𝑥) < 1))
4238, 39, 40, 17, 41syl22anc 835 . . . . . 6 (𝑥 ∈ (-∞(,]0) → (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )𝑥) < 1))
4337, 42mtbird 326 . . . . 5 (𝑥 ∈ (-∞(,]0) → ¬ 𝑥 ∈ (1(ball‘(abs ∘ − ))1))
4443con2i 141 . . . 4 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → ¬ 𝑥 ∈ (-∞(,]0))
4544, 1eleq2s 2901 . . 3 (𝑥𝑆 → ¬ 𝑥 ∈ (-∞(,]0))
468, 45eldifd 3874 . 2 (𝑥𝑆𝑥 ∈ (ℂ ∖ (-∞(,]0)))
4746ssriv 3897 1 𝑆 ⊆ (ℂ ∖ (-∞(,]0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  w3a 1080   = wceq 1522  wcel 2081  cdif 3860  wss 3863   class class class wbr 4966  ccom 5452  cfv 6230  (class class class)co 7021  cc 10386  cr 10387  0cc0 10388  1c1 10389  -∞cmnf 10524  *cxr 10525   < clt 10526  cle 10527  cmin 10722  (,]cioc 12594  abscabs 14432  ∞Metcxmet 20217  Metcmet 20218  ballcbl 20219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-er 8144  df-map 8263  df-en 8363  df-dom 8364  df-sdom 8365  df-sup 8757  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-n0 11751  df-z 11835  df-uz 12099  df-rp 12245  df-xadd 12363  df-ioc 12598  df-seq 13225  df-exp 13285  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434  df-psmet 20224  df-xmet 20225  df-met 20226  df-bl 20227
This theorem is referenced by:  dvlog2  24922  logtayl  24929  logtayl2  24931  efrlim  25234  lgamcvg2  25319
  Copyright terms: Public domain W3C validator