MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlog2lem Structured version   Visualization version   GIF version

Theorem dvlog2lem 26578
Description: Lemma for dvlog2 26579. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
dvlog2.s 𝑆 = (1(ball‘(abs ∘ − ))1)
Assertion
Ref Expression
dvlog2lem 𝑆 ⊆ (ℂ ∖ (-∞(,]0))

Proof of Theorem dvlog2lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvlog2.s . . . . 5 𝑆 = (1(ball‘(abs ∘ − ))1)
2 cnxmet 24677 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
3 ax-1cn 11086 . . . . . 6 1 ∈ ℂ
4 1xr 11193 . . . . . 6 1 ∈ ℝ*
5 blssm 24323 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ⊆ ℂ)
62, 3, 4, 5mp3an 1463 . . . . 5 (1(ball‘(abs ∘ − ))1) ⊆ ℂ
71, 6eqsstri 3984 . . . 4 𝑆 ⊆ ℂ
87sseli 3933 . . 3 (𝑥𝑆𝑥 ∈ ℂ)
9 1red 11135 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℝ)
10 cnmet 24676 . . . . . . . 8 (abs ∘ − ) ∈ (Met‘ℂ)
11 mnfxr 11191 . . . . . . . . . . 11 -∞ ∈ ℝ*
12 0re 11136 . . . . . . . . . . 11 0 ∈ ℝ
13 iocssre 13349 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (-∞(,]0) ⊆ ℝ)
1411, 12, 13mp2an 692 . . . . . . . . . 10 (-∞(,]0) ⊆ ℝ
15 ax-resscn 11085 . . . . . . . . . 10 ℝ ⊆ ℂ
1614, 15sstri 3947 . . . . . . . . 9 (-∞(,]0) ⊆ ℂ
1716sseli 3933 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → 𝑥 ∈ ℂ)
18 metcl 24237 . . . . . . . 8 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(abs ∘ − )𝑥) ∈ ℝ)
1910, 3, 17, 18mp3an12i 1467 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) ∈ ℝ)
20 1m0e1 12263 . . . . . . . . 9 (1 − 0) = 1
2114sseli 3933 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ∈ ℝ)
2212a1i 11 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 0 ∈ ℝ)
23 elioc2 13331 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝑥 ∈ (-∞(,]0) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ 0)))
2411, 12, 23mp2an 692 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,]0) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ 0))
2524simp3bi 1147 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ≤ 0)
2621, 22, 9, 25lesub2dd 11756 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (1 − 0) ≤ (1 − 𝑥))
2720, 26eqbrtrrid 5131 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → 1 ≤ (1 − 𝑥))
28 eqid 2729 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
2928cnmetdval 24675 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(abs ∘ − )𝑥) = (abs‘(1 − 𝑥)))
303, 17, 29sylancr 587 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) = (abs‘(1 − 𝑥)))
31 0le1 11662 . . . . . . . . . . . 12 0 ≤ 1
3231a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,]0) → 0 ≤ 1)
3321, 22, 9, 25, 32letrd 11292 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ≤ 1)
3421, 9, 33abssubge0d 15360 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (abs‘(1 − 𝑥)) = (1 − 𝑥))
3530, 34eqtrd 2764 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) = (1 − 𝑥))
3627, 35breqtrrd 5123 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ≤ (1(abs ∘ − )𝑥))
379, 19, 36lensymd 11286 . . . . . 6 (𝑥 ∈ (-∞(,]0) → ¬ (1(abs ∘ − )𝑥) < 1)
382a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → (abs ∘ − ) ∈ (∞Met‘ℂ))
394a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℝ*)
403a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℂ)
41 elbl2 24295 . . . . . . 7 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )𝑥) < 1))
4238, 39, 40, 17, 41syl22anc 838 . . . . . 6 (𝑥 ∈ (-∞(,]0) → (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )𝑥) < 1))
4337, 42mtbird 325 . . . . 5 (𝑥 ∈ (-∞(,]0) → ¬ 𝑥 ∈ (1(ball‘(abs ∘ − ))1))
4443con2i 139 . . . 4 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → ¬ 𝑥 ∈ (-∞(,]0))
4544, 1eleq2s 2846 . . 3 (𝑥𝑆 → ¬ 𝑥 ∈ (-∞(,]0))
468, 45eldifd 3916 . 2 (𝑥𝑆𝑥 ∈ (ℂ ∖ (-∞(,]0)))
4746ssriv 3941 1 𝑆 ⊆ (ℂ ∖ (-∞(,]0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  w3a 1086   = wceq 1540  wcel 2109  cdif 3902  wss 3905   class class class wbr 5095  ccom 5627  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029  -∞cmnf 11166  *cxr 11167   < clt 11168  cle 11169  cmin 11366  (,]cioc 13268  abscabs 15160  ∞Metcxmet 21265  Metcmet 21266  ballcbl 21267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-xadd 13034  df-ioc 13272  df-seq 13928  df-exp 13988  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275
This theorem is referenced by:  dvlog2  26579  logtayl  26586  logtayl2  26588  efrlim  26896  efrlimOLD  26897  lgamcvg2  26982
  Copyright terms: Public domain W3C validator