MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlog2lem Structured version   Visualization version   GIF version

Theorem dvlog2lem 26568
Description: Lemma for dvlog2 26569. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
dvlog2.s 𝑆 = (1(ball‘(abs ∘ − ))1)
Assertion
Ref Expression
dvlog2lem 𝑆 ⊆ (ℂ ∖ (-∞(,]0))

Proof of Theorem dvlog2lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvlog2.s . . . . 5 𝑆 = (1(ball‘(abs ∘ − ))1)
2 cnxmet 24667 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
3 ax-1cn 11133 . . . . . 6 1 ∈ ℂ
4 1xr 11240 . . . . . 6 1 ∈ ℝ*
5 blssm 24313 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ⊆ ℂ)
62, 3, 4, 5mp3an 1463 . . . . 5 (1(ball‘(abs ∘ − ))1) ⊆ ℂ
71, 6eqsstri 3996 . . . 4 𝑆 ⊆ ℂ
87sseli 3945 . . 3 (𝑥𝑆𝑥 ∈ ℂ)
9 1red 11182 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℝ)
10 cnmet 24666 . . . . . . . 8 (abs ∘ − ) ∈ (Met‘ℂ)
11 mnfxr 11238 . . . . . . . . . . 11 -∞ ∈ ℝ*
12 0re 11183 . . . . . . . . . . 11 0 ∈ ℝ
13 iocssre 13395 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (-∞(,]0) ⊆ ℝ)
1411, 12, 13mp2an 692 . . . . . . . . . 10 (-∞(,]0) ⊆ ℝ
15 ax-resscn 11132 . . . . . . . . . 10 ℝ ⊆ ℂ
1614, 15sstri 3959 . . . . . . . . 9 (-∞(,]0) ⊆ ℂ
1716sseli 3945 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → 𝑥 ∈ ℂ)
18 metcl 24227 . . . . . . . 8 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(abs ∘ − )𝑥) ∈ ℝ)
1910, 3, 17, 18mp3an12i 1467 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) ∈ ℝ)
20 1m0e1 12309 . . . . . . . . 9 (1 − 0) = 1
2114sseli 3945 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ∈ ℝ)
2212a1i 11 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 0 ∈ ℝ)
23 elioc2 13377 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝑥 ∈ (-∞(,]0) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ 0)))
2411, 12, 23mp2an 692 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,]0) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ 0))
2524simp3bi 1147 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ≤ 0)
2621, 22, 9, 25lesub2dd 11802 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (1 − 0) ≤ (1 − 𝑥))
2720, 26eqbrtrrid 5146 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → 1 ≤ (1 − 𝑥))
28 eqid 2730 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
2928cnmetdval 24665 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(abs ∘ − )𝑥) = (abs‘(1 − 𝑥)))
303, 17, 29sylancr 587 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) = (abs‘(1 − 𝑥)))
31 0le1 11708 . . . . . . . . . . . 12 0 ≤ 1
3231a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,]0) → 0 ≤ 1)
3321, 22, 9, 25, 32letrd 11338 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ≤ 1)
3421, 9, 33abssubge0d 15407 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (abs‘(1 − 𝑥)) = (1 − 𝑥))
3530, 34eqtrd 2765 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) = (1 − 𝑥))
3627, 35breqtrrd 5138 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ≤ (1(abs ∘ − )𝑥))
379, 19, 36lensymd 11332 . . . . . 6 (𝑥 ∈ (-∞(,]0) → ¬ (1(abs ∘ − )𝑥) < 1)
382a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → (abs ∘ − ) ∈ (∞Met‘ℂ))
394a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℝ*)
403a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℂ)
41 elbl2 24285 . . . . . . 7 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )𝑥) < 1))
4238, 39, 40, 17, 41syl22anc 838 . . . . . 6 (𝑥 ∈ (-∞(,]0) → (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )𝑥) < 1))
4337, 42mtbird 325 . . . . 5 (𝑥 ∈ (-∞(,]0) → ¬ 𝑥 ∈ (1(ball‘(abs ∘ − ))1))
4443con2i 139 . . . 4 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → ¬ 𝑥 ∈ (-∞(,]0))
4544, 1eleq2s 2847 . . 3 (𝑥𝑆 → ¬ 𝑥 ∈ (-∞(,]0))
468, 45eldifd 3928 . 2 (𝑥𝑆𝑥 ∈ (ℂ ∖ (-∞(,]0)))
4746ssriv 3953 1 𝑆 ⊆ (ℂ ∖ (-∞(,]0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  w3a 1086   = wceq 1540  wcel 2109  cdif 3914  wss 3917   class class class wbr 5110  ccom 5645  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  cmin 11412  (,]cioc 13314  abscabs 15207  ∞Metcxmet 21256  Metcmet 21257  ballcbl 21258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-ioc 13318  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266
This theorem is referenced by:  dvlog2  26569  logtayl  26576  logtayl2  26578  efrlim  26886  efrlimOLD  26887  lgamcvg2  26972
  Copyright terms: Public domain W3C validator