Step | Hyp | Ref
| Expression |
1 | | dvlog2.s |
. . . . 5
⊢ 𝑆 = (1(ball‘(abs ∘
− ))1) |
2 | | cnxmet 23842 |
. . . . . 6
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
3 | | ax-1cn 10860 |
. . . . . 6
⊢ 1 ∈
ℂ |
4 | | 1xr 10965 |
. . . . . 6
⊢ 1 ∈
ℝ* |
5 | | blssm 23479 |
. . . . . 6
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ
∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ −
))1) ⊆ ℂ) |
6 | 2, 3, 4, 5 | mp3an 1459 |
. . . . 5
⊢
(1(ball‘(abs ∘ − ))1) ⊆ ℂ |
7 | 1, 6 | eqsstri 3951 |
. . . 4
⊢ 𝑆 ⊆
ℂ |
8 | 7 | sseli 3913 |
. . 3
⊢ (𝑥 ∈ 𝑆 → 𝑥 ∈ ℂ) |
9 | | 1red 10907 |
. . . . . . 7
⊢ (𝑥 ∈ (-∞(,]0) → 1
∈ ℝ) |
10 | | cnmet 23841 |
. . . . . . . 8
⊢ (abs
∘ − ) ∈ (Met‘ℂ) |
11 | | mnfxr 10963 |
. . . . . . . . . . 11
⊢ -∞
∈ ℝ* |
12 | | 0re 10908 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
13 | | iocssre 13088 |
. . . . . . . . . . 11
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) →
(-∞(,]0) ⊆ ℝ) |
14 | 11, 12, 13 | mp2an 688 |
. . . . . . . . . 10
⊢
(-∞(,]0) ⊆ ℝ |
15 | | ax-resscn 10859 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℂ |
16 | 14, 15 | sstri 3926 |
. . . . . . . . 9
⊢
(-∞(,]0) ⊆ ℂ |
17 | 16 | sseli 3913 |
. . . . . . . 8
⊢ (𝑥 ∈ (-∞(,]0) →
𝑥 ∈
ℂ) |
18 | | metcl 23393 |
. . . . . . . 8
⊢ (((abs
∘ − ) ∈ (Met‘ℂ) ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(abs
∘ − )𝑥) ∈
ℝ) |
19 | 10, 3, 17, 18 | mp3an12i 1463 |
. . . . . . 7
⊢ (𝑥 ∈ (-∞(,]0) →
(1(abs ∘ − )𝑥)
∈ ℝ) |
20 | | 1m0e1 12024 |
. . . . . . . . 9
⊢ (1
− 0) = 1 |
21 | 14 | sseli 3913 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (-∞(,]0) →
𝑥 ∈
ℝ) |
22 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (-∞(,]0) → 0
∈ ℝ) |
23 | | elioc2 13071 |
. . . . . . . . . . . 12
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) →
(𝑥 ∈ (-∞(,]0)
↔ (𝑥 ∈ ℝ
∧ -∞ < 𝑥 ∧
𝑥 ≤
0))) |
24 | 11, 12, 23 | mp2an 688 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-∞(,]0) ↔
(𝑥 ∈ ℝ ∧
-∞ < 𝑥 ∧ 𝑥 ≤ 0)) |
25 | 24 | simp3bi 1145 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (-∞(,]0) →
𝑥 ≤ 0) |
26 | 21, 22, 9, 25 | lesub2dd 11522 |
. . . . . . . . 9
⊢ (𝑥 ∈ (-∞(,]0) → (1
− 0) ≤ (1 − 𝑥)) |
27 | 20, 26 | eqbrtrrid 5106 |
. . . . . . . 8
⊢ (𝑥 ∈ (-∞(,]0) → 1
≤ (1 − 𝑥)) |
28 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (abs
∘ − ) = (abs ∘ − ) |
29 | 28 | cnmetdval 23840 |
. . . . . . . . . 10
⊢ ((1
∈ ℂ ∧ 𝑥
∈ ℂ) → (1(abs ∘ − )𝑥) = (abs‘(1 − 𝑥))) |
30 | 3, 17, 29 | sylancr 586 |
. . . . . . . . 9
⊢ (𝑥 ∈ (-∞(,]0) →
(1(abs ∘ − )𝑥)
= (abs‘(1 − 𝑥))) |
31 | | 0le1 11428 |
. . . . . . . . . . . 12
⊢ 0 ≤
1 |
32 | 31 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (-∞(,]0) → 0
≤ 1) |
33 | 21, 22, 9, 25, 32 | letrd 11062 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (-∞(,]0) →
𝑥 ≤ 1) |
34 | 21, 9, 33 | abssubge0d 15071 |
. . . . . . . . 9
⊢ (𝑥 ∈ (-∞(,]0) →
(abs‘(1 − 𝑥)) =
(1 − 𝑥)) |
35 | 30, 34 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑥 ∈ (-∞(,]0) →
(1(abs ∘ − )𝑥)
= (1 − 𝑥)) |
36 | 27, 35 | breqtrrd 5098 |
. . . . . . 7
⊢ (𝑥 ∈ (-∞(,]0) → 1
≤ (1(abs ∘ − )𝑥)) |
37 | 9, 19, 36 | lensymd 11056 |
. . . . . 6
⊢ (𝑥 ∈ (-∞(,]0) →
¬ (1(abs ∘ − )𝑥) < 1) |
38 | 2 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ (-∞(,]0) →
(abs ∘ − ) ∈ (∞Met‘ℂ)) |
39 | 4 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ (-∞(,]0) → 1
∈ ℝ*) |
40 | 3 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ (-∞(,]0) → 1
∈ ℂ) |
41 | | elbl2 23451 |
. . . . . . 7
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (1 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (1(ball‘(abs ∘ −
))1) ↔ (1(abs ∘ − )𝑥) < 1)) |
42 | 38, 39, 40, 17, 41 | syl22anc 835 |
. . . . . 6
⊢ (𝑥 ∈ (-∞(,]0) →
(𝑥 ∈
(1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )𝑥) < 1)) |
43 | 37, 42 | mtbird 324 |
. . . . 5
⊢ (𝑥 ∈ (-∞(,]0) →
¬ 𝑥 ∈
(1(ball‘(abs ∘ − ))1)) |
44 | 43 | con2i 139 |
. . . 4
⊢ (𝑥 ∈ (1(ball‘(abs
∘ − ))1) → ¬ 𝑥 ∈ (-∞(,]0)) |
45 | 44, 1 | eleq2s 2857 |
. . 3
⊢ (𝑥 ∈ 𝑆 → ¬ 𝑥 ∈ (-∞(,]0)) |
46 | 8, 45 | eldifd 3894 |
. 2
⊢ (𝑥 ∈ 𝑆 → 𝑥 ∈ (ℂ ∖
(-∞(,]0))) |
47 | 46 | ssriv 3921 |
1
⊢ 𝑆 ⊆ (ℂ ∖
(-∞(,]0)) |