MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlog2lem Structured version   Visualization version   GIF version

Theorem dvlog2lem 25712
Description: Lemma for dvlog2 25713. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
dvlog2.s 𝑆 = (1(ball‘(abs ∘ − ))1)
Assertion
Ref Expression
dvlog2lem 𝑆 ⊆ (ℂ ∖ (-∞(,]0))

Proof of Theorem dvlog2lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvlog2.s . . . . 5 𝑆 = (1(ball‘(abs ∘ − ))1)
2 cnxmet 23842 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
3 ax-1cn 10860 . . . . . 6 1 ∈ ℂ
4 1xr 10965 . . . . . 6 1 ∈ ℝ*
5 blssm 23479 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ⊆ ℂ)
62, 3, 4, 5mp3an 1459 . . . . 5 (1(ball‘(abs ∘ − ))1) ⊆ ℂ
71, 6eqsstri 3951 . . . 4 𝑆 ⊆ ℂ
87sseli 3913 . . 3 (𝑥𝑆𝑥 ∈ ℂ)
9 1red 10907 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℝ)
10 cnmet 23841 . . . . . . . 8 (abs ∘ − ) ∈ (Met‘ℂ)
11 mnfxr 10963 . . . . . . . . . . 11 -∞ ∈ ℝ*
12 0re 10908 . . . . . . . . . . 11 0 ∈ ℝ
13 iocssre 13088 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (-∞(,]0) ⊆ ℝ)
1411, 12, 13mp2an 688 . . . . . . . . . 10 (-∞(,]0) ⊆ ℝ
15 ax-resscn 10859 . . . . . . . . . 10 ℝ ⊆ ℂ
1614, 15sstri 3926 . . . . . . . . 9 (-∞(,]0) ⊆ ℂ
1716sseli 3913 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → 𝑥 ∈ ℂ)
18 metcl 23393 . . . . . . . 8 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(abs ∘ − )𝑥) ∈ ℝ)
1910, 3, 17, 18mp3an12i 1463 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) ∈ ℝ)
20 1m0e1 12024 . . . . . . . . 9 (1 − 0) = 1
2114sseli 3913 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ∈ ℝ)
2212a1i 11 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 0 ∈ ℝ)
23 elioc2 13071 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝑥 ∈ (-∞(,]0) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ 0)))
2411, 12, 23mp2an 688 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,]0) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ 0))
2524simp3bi 1145 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ≤ 0)
2621, 22, 9, 25lesub2dd 11522 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (1 − 0) ≤ (1 − 𝑥))
2720, 26eqbrtrrid 5106 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → 1 ≤ (1 − 𝑥))
28 eqid 2738 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
2928cnmetdval 23840 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(abs ∘ − )𝑥) = (abs‘(1 − 𝑥)))
303, 17, 29sylancr 586 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) = (abs‘(1 − 𝑥)))
31 0le1 11428 . . . . . . . . . . . 12 0 ≤ 1
3231a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,]0) → 0 ≤ 1)
3321, 22, 9, 25, 32letrd 11062 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ≤ 1)
3421, 9, 33abssubge0d 15071 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (abs‘(1 − 𝑥)) = (1 − 𝑥))
3530, 34eqtrd 2778 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) = (1 − 𝑥))
3627, 35breqtrrd 5098 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ≤ (1(abs ∘ − )𝑥))
379, 19, 36lensymd 11056 . . . . . 6 (𝑥 ∈ (-∞(,]0) → ¬ (1(abs ∘ − )𝑥) < 1)
382a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → (abs ∘ − ) ∈ (∞Met‘ℂ))
394a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℝ*)
403a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℂ)
41 elbl2 23451 . . . . . . 7 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )𝑥) < 1))
4238, 39, 40, 17, 41syl22anc 835 . . . . . 6 (𝑥 ∈ (-∞(,]0) → (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )𝑥) < 1))
4337, 42mtbird 324 . . . . 5 (𝑥 ∈ (-∞(,]0) → ¬ 𝑥 ∈ (1(ball‘(abs ∘ − ))1))
4443con2i 139 . . . 4 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → ¬ 𝑥 ∈ (-∞(,]0))
4544, 1eleq2s 2857 . . 3 (𝑥𝑆 → ¬ 𝑥 ∈ (-∞(,]0))
468, 45eldifd 3894 . 2 (𝑥𝑆𝑥 ∈ (ℂ ∖ (-∞(,]0)))
4746ssriv 3921 1 𝑆 ⊆ (ℂ ∖ (-∞(,]0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  w3a 1085   = wceq 1539  wcel 2108  cdif 3880  wss 3883   class class class wbr 5070  ccom 5584  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  cmin 11135  (,]cioc 13009  abscabs 14873  ∞Metcxmet 20495  Metcmet 20496  ballcbl 20497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-xadd 12778  df-ioc 13013  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505
This theorem is referenced by:  dvlog2  25713  logtayl  25720  logtayl2  25722  efrlim  26024  lgamcvg2  26109
  Copyright terms: Public domain W3C validator