MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlog2lem Structured version   Visualization version   GIF version

Theorem dvlog2lem 26708
Description: Lemma for dvlog2 26709. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypothesis
Ref Expression
dvlog2.s 𝑆 = (1(ball‘(abs ∘ − ))1)
Assertion
Ref Expression
dvlog2lem 𝑆 ⊆ (ℂ ∖ (-∞(,]0))

Proof of Theorem dvlog2lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dvlog2.s . . . . 5 𝑆 = (1(ball‘(abs ∘ − ))1)
2 cnxmet 24808 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
3 ax-1cn 11210 . . . . . 6 1 ∈ ℂ
4 1xr 11317 . . . . . 6 1 ∈ ℝ*
5 blssm 24443 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℂ ∧ 1 ∈ ℝ*) → (1(ball‘(abs ∘ − ))1) ⊆ ℂ)
62, 3, 4, 5mp3an 1460 . . . . 5 (1(ball‘(abs ∘ − ))1) ⊆ ℂ
71, 6eqsstri 4029 . . . 4 𝑆 ⊆ ℂ
87sseli 3990 . . 3 (𝑥𝑆𝑥 ∈ ℂ)
9 1red 11259 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℝ)
10 cnmet 24807 . . . . . . . 8 (abs ∘ − ) ∈ (Met‘ℂ)
11 mnfxr 11315 . . . . . . . . . . 11 -∞ ∈ ℝ*
12 0re 11260 . . . . . . . . . . 11 0 ∈ ℝ
13 iocssre 13463 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (-∞(,]0) ⊆ ℝ)
1411, 12, 13mp2an 692 . . . . . . . . . 10 (-∞(,]0) ⊆ ℝ
15 ax-resscn 11209 . . . . . . . . . 10 ℝ ⊆ ℂ
1614, 15sstri 4004 . . . . . . . . 9 (-∞(,]0) ⊆ ℂ
1716sseli 3990 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → 𝑥 ∈ ℂ)
18 metcl 24357 . . . . . . . 8 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(abs ∘ − )𝑥) ∈ ℝ)
1910, 3, 17, 18mp3an12i 1464 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) ∈ ℝ)
20 1m0e1 12384 . . . . . . . . 9 (1 − 0) = 1
2114sseli 3990 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ∈ ℝ)
2212a1i 11 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 0 ∈ ℝ)
23 elioc2 13446 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (𝑥 ∈ (-∞(,]0) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ 0)))
2411, 12, 23mp2an 692 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,]0) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ 0))
2524simp3bi 1146 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ≤ 0)
2621, 22, 9, 25lesub2dd 11877 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (1 − 0) ≤ (1 − 𝑥))
2720, 26eqbrtrrid 5183 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → 1 ≤ (1 − 𝑥))
28 eqid 2734 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
2928cnmetdval 24806 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (1(abs ∘ − )𝑥) = (abs‘(1 − 𝑥)))
303, 17, 29sylancr 587 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) = (abs‘(1 − 𝑥)))
31 0le1 11783 . . . . . . . . . . . 12 0 ≤ 1
3231a1i 11 . . . . . . . . . . 11 (𝑥 ∈ (-∞(,]0) → 0 ≤ 1)
3321, 22, 9, 25, 32letrd 11415 . . . . . . . . . 10 (𝑥 ∈ (-∞(,]0) → 𝑥 ≤ 1)
3421, 9, 33abssubge0d 15466 . . . . . . . . 9 (𝑥 ∈ (-∞(,]0) → (abs‘(1 − 𝑥)) = (1 − 𝑥))
3530, 34eqtrd 2774 . . . . . . . 8 (𝑥 ∈ (-∞(,]0) → (1(abs ∘ − )𝑥) = (1 − 𝑥))
3627, 35breqtrrd 5175 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ≤ (1(abs ∘ − )𝑥))
379, 19, 36lensymd 11409 . . . . . 6 (𝑥 ∈ (-∞(,]0) → ¬ (1(abs ∘ − )𝑥) < 1)
382a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → (abs ∘ − ) ∈ (∞Met‘ℂ))
394a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℝ*)
403a1i 11 . . . . . . 7 (𝑥 ∈ (-∞(,]0) → 1 ∈ ℂ)
41 elbl2 24415 . . . . . . 7 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (1 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )𝑥) < 1))
4238, 39, 40, 17, 41syl22anc 839 . . . . . 6 (𝑥 ∈ (-∞(,]0) → (𝑥 ∈ (1(ball‘(abs ∘ − ))1) ↔ (1(abs ∘ − )𝑥) < 1))
4337, 42mtbird 325 . . . . 5 (𝑥 ∈ (-∞(,]0) → ¬ 𝑥 ∈ (1(ball‘(abs ∘ − ))1))
4443con2i 139 . . . 4 (𝑥 ∈ (1(ball‘(abs ∘ − ))1) → ¬ 𝑥 ∈ (-∞(,]0))
4544, 1eleq2s 2856 . . 3 (𝑥𝑆 → ¬ 𝑥 ∈ (-∞(,]0))
468, 45eldifd 3973 . 2 (𝑥𝑆𝑥 ∈ (ℂ ∖ (-∞(,]0)))
4746ssriv 3998 1 𝑆 ⊆ (ℂ ∖ (-∞(,]0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  w3a 1086   = wceq 1536  wcel 2105  cdif 3959  wss 3962   class class class wbr 5147  ccom 5692  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153  -∞cmnf 11290  *cxr 11291   < clt 11292  cle 11293  cmin 11489  (,]cioc 13384  abscabs 15269  ∞Metcxmet 21366  Metcmet 21367  ballcbl 21368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-xadd 13152  df-ioc 13388  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376
This theorem is referenced by:  dvlog2  26709  logtayl  26716  logtayl2  26718  efrlim  27026  efrlimOLD  27027  lgamcvg2  27112
  Copyright terms: Public domain W3C validator