Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem14 Structured version   Visualization version   GIF version

Theorem dalem14 35482
Description: Lemma for dath 35541. Planes 𝑌 and 𝑍 form a 3-dimensional space (when they are different). (Contributed by NM, 22-Jul-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem14.o 𝑂 = (LPlanes‘𝐾)
dalem14.v 𝑉 = (LVols‘𝐾)
dalem14.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem14.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem14.w 𝑊 = (𝑌 𝐶)
Assertion
Ref Expression
dalem14 ((𝜑𝑌𝑍) → (𝑌 𝑍) ∈ 𝑉)

Proof of Theorem dalem14
StepHypRef Expression
1 dalema.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalemc.l . . 3 = (le‘𝐾)
3 dalemc.j . . 3 = (join‘𝐾)
4 dalemc.a . . 3 𝐴 = (Atoms‘𝐾)
5 dalem14.o . . 3 𝑂 = (LPlanes‘𝐾)
6 dalem14.y . . 3 𝑌 = ((𝑃 𝑄) 𝑅)
7 dalem14.z . . 3 𝑍 = ((𝑆 𝑇) 𝑈)
8 dalem14.w . . 3 𝑊 = (𝑌 𝐶)
91, 2, 3, 4, 5, 6, 7, 8dalem13 35481 . 2 ((𝜑𝑌𝑍) → (𝑌 𝑍) = 𝑊)
10 dalem14.v . . 3 𝑉 = (LVols‘𝐾)
111, 2, 3, 4, 5, 10, 6, 7, 8dalem9 35477 . 2 ((𝜑𝑌𝑍) → 𝑊𝑉)
129, 11eqeltrd 2850 1 ((𝜑𝑌𝑍) → (𝑌 𝑍) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  cfv 6029  (class class class)co 6792  Basecbs 16060  lecple 16152  joincjn 17148  Atomscatm 35068  HLchlt 35155  LPlanesclpl 35297  LVolsclvol 35298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6753  df-ov 6795  df-oprab 6796  df-preset 17132  df-poset 17150  df-plt 17162  df-lub 17178  df-glb 17179  df-join 17180  df-meet 17181  df-p0 17243  df-lat 17250  df-clat 17312  df-oposet 34981  df-ol 34983  df-oml 34984  df-covers 35071  df-ats 35072  df-atl 35103  df-cvlat 35127  df-hlat 35156  df-llines 35303  df-lplanes 35304  df-lvols 35305
This theorem is referenced by:  dalem15  35483
  Copyright terms: Public domain W3C validator