Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acacni | Structured version Visualization version GIF version |
Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acacni | ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → AC 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . . 4 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
2 | vex 3412 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | simpl 486 | . . . . . 6 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → CHOICE) | |
4 | dfac10 9751 | . . . . . 6 ⊢ (CHOICE ↔ dom card = V) | |
5 | 3, 4 | sylib 221 | . . . . 5 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → dom card = V) |
6 | 2, 5 | eleqtrrid 2845 | . . . 4 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → 𝑥 ∈ dom card) |
7 | numacn 9663 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ dom card → 𝑥 ∈ AC 𝐴)) | |
8 | 1, 6, 7 | sylc 65 | . . 3 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → 𝑥 ∈ AC 𝐴) |
9 | 2 | a1i 11 | . . 3 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → 𝑥 ∈ V) |
10 | 8, 9 | 2thd 268 | . 2 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ V)) |
11 | 10 | eqrdv 2735 | 1 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → AC 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 dom cdm 5551 cardccrd 9551 AC wacn 9554 CHOICEwac 9729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-card 9555 df-acn 9558 df-ac 9730 |
This theorem is referenced by: dfacacn 9755 dfac13 9756 ptcls 22513 dfac14 22515 |
Copyright terms: Public domain | W3C validator |