![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acacni | Structured version Visualization version GIF version |
Description: A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acacni | ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → AC 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
2 | vex 3470 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | simpl 482 | . . . . . 6 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → CHOICE) | |
4 | dfac10 10128 | . . . . . 6 ⊢ (CHOICE ↔ dom card = V) | |
5 | 3, 4 | sylib 217 | . . . . 5 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → dom card = V) |
6 | 2, 5 | eleqtrrid 2832 | . . . 4 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → 𝑥 ∈ dom card) |
7 | numacn 10040 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ dom card → 𝑥 ∈ AC 𝐴)) | |
8 | 1, 6, 7 | sylc 65 | . . 3 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → 𝑥 ∈ AC 𝐴) |
9 | 2 | a1i 11 | . . 3 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → 𝑥 ∈ V) |
10 | 8, 9 | 2thd 265 | . 2 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ V)) |
11 | 10 | eqrdv 2722 | 1 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → AC 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 dom cdm 5666 cardccrd 9926 AC wacn 9929 CHOICEwac 10106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-card 9930 df-acn 9933 df-ac 10107 |
This theorem is referenced by: dfacacn 10132 dfac13 10133 ptcls 23442 dfac14 23444 |
Copyright terms: Public domain | W3C validator |