MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsn Structured version   Visualization version   GIF version

Theorem lspsn 20915
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f 𝐹 = (Scalar‘𝑊)
lspsn.k 𝐾 = (Base‘𝐹)
lspsn.v 𝑉 = (Base‘𝑊)
lspsn.t · = ( ·𝑠𝑊)
lspsn.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsn ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
Distinct variable groups:   𝑘,𝐹   𝑣,𝑘,𝐾   𝑘,𝑁,𝑣   𝑘,𝑉,𝑣   𝑘,𝑊,𝑣   · ,𝑘,𝑣   𝑘,𝑋,𝑣
Allowed substitution hint:   𝐹(𝑣)

Proof of Theorem lspsn
StepHypRef Expression
1 eqid 2730 . . 3 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 lspsn.n . . 3 𝑁 = (LSpan‘𝑊)
3 simpl 482 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
4 lspsn.v . . . 4 𝑉 = (Base‘𝑊)
5 lspsn.f . . . 4 𝐹 = (Scalar‘𝑊)
6 lspsn.t . . . 4 · = ( ·𝑠𝑊)
7 lspsn.k . . . 4 𝐾 = (Base‘𝐹)
84, 5, 6, 7, 1lss1d 20876 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∈ (LSubSp‘𝑊))
9 eqid 2730 . . . . . 6 (1r𝐹) = (1r𝐹)
105, 7, 9lmod1cl 20802 . . . . 5 (𝑊 ∈ LMod → (1r𝐹) ∈ 𝐾)
114, 5, 6, 9lmodvs1 20803 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
1211eqcomd 2736 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 = ((1r𝐹) · 𝑋))
13 oveq1 7397 . . . . . 6 (𝑘 = (1r𝐹) → (𝑘 · 𝑋) = ((1r𝐹) · 𝑋))
1413rspceeqv 3614 . . . . 5 (((1r𝐹) ∈ 𝐾𝑋 = ((1r𝐹) · 𝑋)) → ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋))
1510, 12, 14syl2an2r 685 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋))
16 eqeq1 2734 . . . . . . 7 (𝑣 = 𝑋 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑋 = (𝑘 · 𝑋)))
1716rexbidv 3158 . . . . . 6 (𝑣 = 𝑋 → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
1817elabg 3646 . . . . 5 (𝑋𝑉 → (𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
1918adantl 481 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
2015, 19mpbird 257 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
211, 2, 3, 8, 20ellspsn5 20909 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ⊆ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
223adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑊 ∈ LMod)
234, 1, 2lspsncl 20890 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
2423adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
25 simpr 484 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑘𝐾)
264, 2lspsnid 20906 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
2726adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑋 ∈ (𝑁‘{𝑋}))
285, 6, 7, 1lssvscl 20868 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) ∧ (𝑘𝐾𝑋 ∈ (𝑁‘{𝑋}))) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋}))
2922, 24, 25, 27, 28syl22anc 838 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋}))
30 eleq1a 2824 . . . . 5 ((𝑘 · 𝑋) ∈ (𝑁‘{𝑋}) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3129, 30syl 17 . . . 4 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3231rexlimdva 3135 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3332abssdv 4034 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ⊆ (𝑁‘{𝑋}))
3421, 33eqssd 3967 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  {csn 4592  cfv 6514  (class class class)co 7390  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  1rcur 20097  LModclmod 20773  LSubSpclss 20844  LSpanclspn 20884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-lsp 20885
This theorem is referenced by:  ellspsn  20916  rnascl  21807  ldual1dim  39166  dia1dim2  41063  dib1dim2  41169  diclspsn  41195  dih1dimatlem  41330  rnasclg  42494  prjspeclsp  42607
  Copyright terms: Public domain W3C validator