MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsn Structured version   Visualization version   GIF version

Theorem lspsn 20937
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f 𝐹 = (Scalar‘𝑊)
lspsn.k 𝐾 = (Base‘𝐹)
lspsn.v 𝑉 = (Base‘𝑊)
lspsn.t · = ( ·𝑠𝑊)
lspsn.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsn ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
Distinct variable groups:   𝑘,𝐹   𝑣,𝑘,𝐾   𝑘,𝑁,𝑣   𝑘,𝑉,𝑣   𝑘,𝑊,𝑣   · ,𝑘,𝑣   𝑘,𝑋,𝑣
Allowed substitution hint:   𝐹(𝑣)

Proof of Theorem lspsn
StepHypRef Expression
1 eqid 2733 . . 3 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 lspsn.n . . 3 𝑁 = (LSpan‘𝑊)
3 simpl 482 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
4 lspsn.v . . . 4 𝑉 = (Base‘𝑊)
5 lspsn.f . . . 4 𝐹 = (Scalar‘𝑊)
6 lspsn.t . . . 4 · = ( ·𝑠𝑊)
7 lspsn.k . . . 4 𝐾 = (Base‘𝐹)
84, 5, 6, 7, 1lss1d 20898 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∈ (LSubSp‘𝑊))
9 eqid 2733 . . . . . 6 (1r𝐹) = (1r𝐹)
105, 7, 9lmod1cl 20824 . . . . 5 (𝑊 ∈ LMod → (1r𝐹) ∈ 𝐾)
114, 5, 6, 9lmodvs1 20825 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
1211eqcomd 2739 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 = ((1r𝐹) · 𝑋))
13 oveq1 7359 . . . . . 6 (𝑘 = (1r𝐹) → (𝑘 · 𝑋) = ((1r𝐹) · 𝑋))
1413rspceeqv 3596 . . . . 5 (((1r𝐹) ∈ 𝐾𝑋 = ((1r𝐹) · 𝑋)) → ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋))
1510, 12, 14syl2an2r 685 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋))
16 eqeq1 2737 . . . . . . 7 (𝑣 = 𝑋 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑋 = (𝑘 · 𝑋)))
1716rexbidv 3157 . . . . . 6 (𝑣 = 𝑋 → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
1817elabg 3628 . . . . 5 (𝑋𝑉 → (𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
1918adantl 481 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
2015, 19mpbird 257 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
211, 2, 3, 8, 20ellspsn5 20931 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ⊆ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
223adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑊 ∈ LMod)
234, 1, 2lspsncl 20912 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
2423adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
25 simpr 484 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑘𝐾)
264, 2lspsnid 20928 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
2726adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑋 ∈ (𝑁‘{𝑋}))
285, 6, 7, 1lssvscl 20890 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) ∧ (𝑘𝐾𝑋 ∈ (𝑁‘{𝑋}))) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋}))
2922, 24, 25, 27, 28syl22anc 838 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋}))
30 eleq1a 2828 . . . . 5 ((𝑘 · 𝑋) ∈ (𝑁‘{𝑋}) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3129, 30syl 17 . . . 4 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3231rexlimdva 3134 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3332abssdv 4016 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ⊆ (𝑁‘{𝑋}))
3421, 33eqssd 3948 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  {csn 4575  cfv 6486  (class class class)co 7352  Basecbs 17122  Scalarcsca 17166   ·𝑠 cvsca 17167  1rcur 20101  LModclmod 20795  LSubSpclss 20866  LSpanclspn 20906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mgp 20061  df-ur 20102  df-ring 20155  df-lmod 20797  df-lss 20867  df-lsp 20907
This theorem is referenced by:  ellspsn  20938  rnascl  21830  ldual1dim  39285  dia1dim2  41181  dib1dim2  41287  diclspsn  41313  dih1dimatlem  41448  rnasclg  42617  prjspeclsp  42730
  Copyright terms: Public domain W3C validator