![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsn | Structured version Visualization version GIF version |
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspsn.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lspsn.k | ⊢ 𝐾 = (Base‘𝐹) |
lspsn.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsn.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lspsn.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsn | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
2 | lspsn.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | simpl 482 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
4 | lspsn.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
5 | lspsn.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | lspsn.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | lspsn.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
8 | 4, 5, 6, 7, 1 | lss1d 20840 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ∈ (LSubSp‘𝑊)) |
9 | eqid 2727 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
10 | 5, 7, 9 | lmod1cl 20765 | . . . . 5 ⊢ (𝑊 ∈ LMod → (1r‘𝐹) ∈ 𝐾) |
11 | 4, 5, 6, 9 | lmodvs1 20766 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
12 | 11 | eqcomd 2733 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 = ((1r‘𝐹) · 𝑋)) |
13 | oveq1 7421 | . . . . . 6 ⊢ (𝑘 = (1r‘𝐹) → (𝑘 · 𝑋) = ((1r‘𝐹) · 𝑋)) | |
14 | 13 | rspceeqv 3629 | . . . . 5 ⊢ (((1r‘𝐹) ∈ 𝐾 ∧ 𝑋 = ((1r‘𝐹) · 𝑋)) → ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋)) |
15 | 10, 12, 14 | syl2an2r 684 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋)) |
16 | eqeq1 2731 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑋 = (𝑘 · 𝑋))) | |
17 | 16 | rexbidv 3173 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
18 | 17 | elabg 3663 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑋))) |
20 | 15, 19 | mpbird 257 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
21 | 1, 2, 3, 8, 20 | lspsnel5a 20873 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ⊆ {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
22 | 3 | adantr 480 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑊 ∈ LMod) |
23 | 4, 1, 2 | lspsncl 20854 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
24 | 23 | adantr 480 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
25 | simpr 484 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑘 ∈ 𝐾) | |
26 | 4, 2 | lspsnid 20870 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
27 | 26 | adantr 480 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → 𝑋 ∈ (𝑁‘{𝑋})) |
28 | 5, 6, 7, 1 | lssvscl 20832 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) ∧ (𝑘 ∈ 𝐾 ∧ 𝑋 ∈ (𝑁‘{𝑋}))) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋})) |
29 | 22, 24, 25, 27, 28 | syl22anc 838 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋})) |
30 | eleq1a 2823 | . . . . 5 ⊢ ((𝑘 · 𝑋) ∈ (𝑁‘{𝑋}) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) | |
31 | 29, 30 | syl 17 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) ∧ 𝑘 ∈ 𝐾) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) |
32 | 31 | rexlimdva 3150 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋}))) |
33 | 32 | abssdv 4061 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)} ⊆ (𝑁‘{𝑋})) |
34 | 21, 33 | eqssd 3995 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 𝑣 = (𝑘 · 𝑋)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2704 ∃wrex 3065 {csn 4624 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 Scalarcsca 17229 ·𝑠 cvsca 17230 1rcur 20114 LModclmod 20736 LSubSpclss 20808 LSpanclspn 20848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-plusg 17239 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-minusg 18887 df-sbg 18888 df-mgp 20068 df-ur 20115 df-ring 20168 df-lmod 20738 df-lss 20809 df-lsp 20849 |
This theorem is referenced by: lspsnel 20880 rnascl 21817 ldual1dim 38627 dia1dim2 40524 dib1dim2 40630 diclspsn 40656 dih1dimatlem 40791 rnasclg 41711 prjspeclsp 42008 |
Copyright terms: Public domain | W3C validator |