MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsn Structured version   Visualization version   GIF version

Theorem lspsn 20179
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f 𝐹 = (Scalar‘𝑊)
lspsn.k 𝐾 = (Base‘𝐹)
lspsn.v 𝑉 = (Base‘𝑊)
lspsn.t · = ( ·𝑠𝑊)
lspsn.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsn ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
Distinct variable groups:   𝑘,𝐹   𝑣,𝑘,𝐾   𝑘,𝑁,𝑣   𝑘,𝑉,𝑣   𝑘,𝑊,𝑣   · ,𝑘,𝑣   𝑘,𝑋,𝑣
Allowed substitution hint:   𝐹(𝑣)

Proof of Theorem lspsn
StepHypRef Expression
1 eqid 2738 . . 3 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 lspsn.n . . 3 𝑁 = (LSpan‘𝑊)
3 simpl 482 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
4 lspsn.v . . . 4 𝑉 = (Base‘𝑊)
5 lspsn.f . . . 4 𝐹 = (Scalar‘𝑊)
6 lspsn.t . . . 4 · = ( ·𝑠𝑊)
7 lspsn.k . . . 4 𝐾 = (Base‘𝐹)
84, 5, 6, 7, 1lss1d 20140 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ∈ (LSubSp‘𝑊))
9 eqid 2738 . . . . . 6 (1r𝐹) = (1r𝐹)
105, 7, 9lmod1cl 20065 . . . . 5 (𝑊 ∈ LMod → (1r𝐹) ∈ 𝐾)
114, 5, 6, 9lmodvs1 20066 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
1211eqcomd 2744 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 = ((1r𝐹) · 𝑋))
13 oveq1 7262 . . . . . 6 (𝑘 = (1r𝐹) → (𝑘 · 𝑋) = ((1r𝐹) · 𝑋))
1413rspceeqv 3567 . . . . 5 (((1r𝐹) ∈ 𝐾𝑋 = ((1r𝐹) · 𝑋)) → ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋))
1510, 12, 14syl2an2r 681 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋))
16 eqeq1 2742 . . . . . . 7 (𝑣 = 𝑋 → (𝑣 = (𝑘 · 𝑋) ↔ 𝑋 = (𝑘 · 𝑋)))
1716rexbidv 3225 . . . . . 6 (𝑣 = 𝑋 → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
1817elabg 3600 . . . . 5 (𝑋𝑉 → (𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
1918adantl 481 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑋)))
2015, 19mpbird 256 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
211, 2, 3, 8, 20lspsnel5a 20173 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ⊆ {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
223adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑊 ∈ LMod)
234, 1, 2lspsncl 20154 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
2423adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
25 simpr 484 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑘𝐾)
264, 2lspsnid 20170 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
2726adantr 480 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → 𝑋 ∈ (𝑁‘{𝑋}))
285, 6, 7, 1lssvscl 20132 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) ∧ (𝑘𝐾𝑋 ∈ (𝑁‘{𝑋}))) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋}))
2922, 24, 25, 27, 28syl22anc 835 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑘 · 𝑋) ∈ (𝑁‘{𝑋}))
30 eleq1a 2834 . . . . 5 ((𝑘 · 𝑋) ∈ (𝑁‘{𝑋}) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3129, 30syl 17 . . . 4 (((𝑊 ∈ LMod ∧ 𝑋𝑉) ∧ 𝑘𝐾) → (𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3231rexlimdva 3212 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (∃𝑘𝐾 𝑣 = (𝑘 · 𝑋) → 𝑣 ∈ (𝑁‘{𝑋})))
3332abssdv 3998 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)} ⊆ (𝑁‘{𝑋}))
3421, 33eqssd 3934 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) = {𝑣 ∣ ∃𝑘𝐾 𝑣 = (𝑘 · 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  1rcur 19652  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-lsp 20149
This theorem is referenced by:  lspsnel  20180  rnascl  21005  ldual1dim  37107  dia1dim2  39003  dib1dim2  39109  diclspsn  39135  dih1dimatlem  39270  rnasclg  40149  prjspeclsp  40372
  Copyright terms: Public domain W3C validator