Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfmlasuc Structured version   Visualization version   GIF version

Theorem isfmlasuc 35368
Description: The characterization of a Godel formula of height at least 1. (Contributed by AV, 14-Oct-2023.)
Assertion
Ref Expression
isfmlasuc ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))))
Distinct variable groups:   𝑖,𝐹,𝑢,𝑣   𝑖,𝑁,𝑢,𝑣
Allowed substitution hints:   𝑉(𝑣,𝑢,𝑖)

Proof of Theorem isfmlasuc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fmlasuc 35366 . . . 4 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}))
21adantr 480 . . 3 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}))
32eleq2d 2814 . 2 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ 𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)})))
4 elun 4112 . . 3 (𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}))
54a1i 11 . 2 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)})))
6 eqeq1 2733 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 = (𝑢𝑔𝑣) ↔ 𝐹 = (𝑢𝑔𝑣)))
76rexbidv 3157 . . . . . . 7 (𝑓 = 𝐹 → (∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣)))
8 eqeq1 2733 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 = ∀𝑔𝑖𝑢𝐹 = ∀𝑔𝑖𝑢))
98rexbidv 3157 . . . . . . 7 (𝑓 = 𝐹 → (∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))
107, 9orbi12d 918 . . . . . 6 (𝑓 = 𝐹 → ((∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))
1110rexbidv 3157 . . . . 5 (𝑓 = 𝐹 → (∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))
1211elabg 3640 . . . 4 (𝐹𝑉 → (𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)} ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))
1312adantl 481 . . 3 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)} ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))
1413orbi2d 915 . 2 ((𝑁 ∈ ω ∧ 𝐹𝑉) → ((𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))))
153, 5, 143bitrd 305 1 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  cun 3909  suc csuc 6322  cfv 6499  (class class class)co 7369  ωcom 7822  𝑔cgna 35314  𝑔cgol 35315  Fmlacfmla 35317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-map 8778  df-goel 35320  df-goal 35322  df-sat 35323  df-fmla 35325
This theorem is referenced by:  gonarlem  35374  gonar  35375  goalrlem  35376  goalr  35377  fmlasucdisj  35379
  Copyright terms: Public domain W3C validator