Step | Hyp | Ref
| Expression |
1 | | fmlasuc 34377 |
. . . 4
β’ (π β Ο β
(Fmlaβsuc π) =
((Fmlaβπ) βͺ
{π β£ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π = (π’βΌππ£) β¨ βπ β Ο π = βπππ’)})) |
2 | 1 | adantr 482 |
. . 3
β’ ((π β Ο β§ πΉ β π) β (Fmlaβsuc π) = ((Fmlaβπ) βͺ {π β£ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π = (π’βΌππ£) β¨ βπ β Ο π = βπππ’)})) |
3 | 2 | eleq2d 2820 |
. 2
β’ ((π β Ο β§ πΉ β π) β (πΉ β (Fmlaβsuc π) β πΉ β ((Fmlaβπ) βͺ {π β£ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π = (π’βΌππ£) β¨ βπ β Ο π = βπππ’)}))) |
4 | | elun 4149 |
. . 3
β’ (πΉ β ((Fmlaβπ) βͺ {π β£ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π = (π’βΌππ£) β¨ βπ β Ο π = βπππ’)}) β (πΉ β (Fmlaβπ) β¨ πΉ β {π β£ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π = (π’βΌππ£) β¨ βπ β Ο π = βπππ’)})) |
5 | 4 | a1i 11 |
. 2
β’ ((π β Ο β§ πΉ β π) β (πΉ β ((Fmlaβπ) βͺ {π β£ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π = (π’βΌππ£) β¨ βπ β Ο π = βπππ’)}) β (πΉ β (Fmlaβπ) β¨ πΉ β {π β£ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π = (π’βΌππ£) β¨ βπ β Ο π = βπππ’)}))) |
6 | | eqeq1 2737 |
. . . . . . . 8
β’ (π = πΉ β (π = (π’βΌππ£) β πΉ = (π’βΌππ£))) |
7 | 6 | rexbidv 3179 |
. . . . . . 7
β’ (π = πΉ β (βπ£ β (Fmlaβπ)π = (π’βΌππ£) β βπ£ β (Fmlaβπ)πΉ = (π’βΌππ£))) |
8 | | eqeq1 2737 |
. . . . . . . 8
β’ (π = πΉ β (π = βπππ’ β πΉ = βπππ’)) |
9 | 8 | rexbidv 3179 |
. . . . . . 7
β’ (π = πΉ β (βπ β Ο π = βπππ’ β βπ β Ο πΉ = βπππ’)) |
10 | 7, 9 | orbi12d 918 |
. . . . . 6
β’ (π = πΉ β ((βπ£ β (Fmlaβπ)π = (π’βΌππ£) β¨ βπ β Ο π = βπππ’) β (βπ£ β (Fmlaβπ)πΉ = (π’βΌππ£) β¨ βπ β Ο πΉ = βπππ’))) |
11 | 10 | rexbidv 3179 |
. . . . 5
β’ (π = πΉ β (βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π = (π’βΌππ£) β¨ βπ β Ο π = βπππ’) β βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)πΉ = (π’βΌππ£) β¨ βπ β Ο πΉ = βπππ’))) |
12 | 11 | elabg 3667 |
. . . 4
β’ (πΉ β π β (πΉ β {π β£ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π = (π’βΌππ£) β¨ βπ β Ο π = βπππ’)} β βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)πΉ = (π’βΌππ£) β¨ βπ β Ο πΉ = βπππ’))) |
13 | 12 | adantl 483 |
. . 3
β’ ((π β Ο β§ πΉ β π) β (πΉ β {π β£ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π = (π’βΌππ£) β¨ βπ β Ο π = βπππ’)} β βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)πΉ = (π’βΌππ£) β¨ βπ β Ο πΉ = βπππ’))) |
14 | 13 | orbi2d 915 |
. 2
β’ ((π β Ο β§ πΉ β π) β ((πΉ β (Fmlaβπ) β¨ πΉ β {π β£ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)π = (π’βΌππ£) β¨ βπ β Ο π = βπππ’)}) β (πΉ β (Fmlaβπ) β¨ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)πΉ = (π’βΌππ£) β¨ βπ β Ο πΉ = βπππ’)))) |
15 | 3, 5, 14 | 3bitrd 305 |
1
β’ ((π β Ο β§ πΉ β π) β (πΉ β (Fmlaβsuc π) β (πΉ β (Fmlaβπ) β¨ βπ’ β (Fmlaβπ)(βπ£ β (Fmlaβπ)πΉ = (π’βΌππ£) β¨ βπ β Ο πΉ = βπππ’)))) |