| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfmlasuc | Structured version Visualization version GIF version | ||
| Description: The characterization of a Godel formula of height at least 1. (Contributed by AV, 14-Oct-2023.) |
| Ref | Expression |
|---|---|
| isfmlasuc | ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmlasuc 35413 | . . . 4 ⊢ (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)})) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)})) |
| 3 | 2 | eleq2d 2821 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ 𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}))) |
| 4 | elun 4133 | . . 3 ⊢ (𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)})) | |
| 5 | 4 | a1i 11 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}))) |
| 6 | eqeq1 2740 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓 = (𝑢⊼𝑔𝑣) ↔ 𝐹 = (𝑢⊼𝑔𝑣))) | |
| 7 | 6 | rexbidv 3165 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣))) |
| 8 | eqeq1 2740 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓 = ∀𝑔𝑖𝑢 ↔ 𝐹 = ∀𝑔𝑖𝑢)) | |
| 9 | 8 | rexbidv 3165 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)) |
| 10 | 7, 9 | orbi12d 918 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))) |
| 11 | 10 | rexbidv 3165 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))) |
| 12 | 11 | elabg 3660 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)} ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)} ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))) |
| 14 | 13 | orbi2d 915 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → ((𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))) |
| 15 | 3, 5, 14 | 3bitrd 305 | 1 ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 ∪ cun 3929 suc csuc 6359 ‘cfv 6536 (class class class)co 7410 ωcom 7866 ⊼𝑔cgna 35361 ∀𝑔cgol 35362 Fmlacfmla 35364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-map 8847 df-goel 35367 df-goal 35369 df-sat 35370 df-fmla 35372 |
| This theorem is referenced by: gonarlem 35421 gonar 35422 goalrlem 35423 goalr 35424 fmlasucdisj 35426 |
| Copyright terms: Public domain | W3C validator |