Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfmlasuc Structured version   Visualization version   GIF version

Theorem isfmlasuc 35371
Description: The characterization of a Godel formula of height at least 1. (Contributed by AV, 14-Oct-2023.)
Assertion
Ref Expression
isfmlasuc ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))))
Distinct variable groups:   𝑖,𝐹,𝑢,𝑣   𝑖,𝑁,𝑢,𝑣
Allowed substitution hints:   𝑉(𝑣,𝑢,𝑖)

Proof of Theorem isfmlasuc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fmlasuc 35369 . . . 4 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}))
21adantr 480 . . 3 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}))
32eleq2d 2814 . 2 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ 𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)})))
4 elun 4104 . . 3 (𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}))
54a1i 11 . 2 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)})))
6 eqeq1 2733 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 = (𝑢𝑔𝑣) ↔ 𝐹 = (𝑢𝑔𝑣)))
76rexbidv 3153 . . . . . . 7 (𝑓 = 𝐹 → (∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣)))
8 eqeq1 2733 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 = ∀𝑔𝑖𝑢𝐹 = ∀𝑔𝑖𝑢))
98rexbidv 3153 . . . . . . 7 (𝑓 = 𝐹 → (∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))
107, 9orbi12d 918 . . . . . 6 (𝑓 = 𝐹 → ((∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))
1110rexbidv 3153 . . . . 5 (𝑓 = 𝐹 → (∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))
1211elabg 3632 . . . 4 (𝐹𝑉 → (𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)} ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))
1312adantl 481 . . 3 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)} ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))
1413orbi2d 915 . 2 ((𝑁 ∈ ω ∧ 𝐹𝑉) → ((𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))))
153, 5, 143bitrd 305 1 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  cun 3901  suc csuc 6309  cfv 6482  (class class class)co 7349  ωcom 7799  𝑔cgna 35317  𝑔cgol 35318  Fmlacfmla 35320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-map 8755  df-goel 35323  df-goal 35325  df-sat 35326  df-fmla 35328
This theorem is referenced by:  gonarlem  35377  gonar  35378  goalrlem  35379  goalr  35380  fmlasucdisj  35382
  Copyright terms: Public domain W3C validator