Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfmlasuc Structured version   Visualization version   GIF version

Theorem isfmlasuc 35415
Description: The characterization of a Godel formula of height at least 1. (Contributed by AV, 14-Oct-2023.)
Assertion
Ref Expression
isfmlasuc ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))))
Distinct variable groups:   𝑖,𝐹,𝑢,𝑣   𝑖,𝑁,𝑢,𝑣
Allowed substitution hints:   𝑉(𝑣,𝑢,𝑖)

Proof of Theorem isfmlasuc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fmlasuc 35413 . . . 4 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}))
21adantr 480 . . 3 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}))
32eleq2d 2821 . 2 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ 𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)})))
4 elun 4133 . . 3 (𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}))
54a1i 11 . 2 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)})))
6 eqeq1 2740 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 = (𝑢𝑔𝑣) ↔ 𝐹 = (𝑢𝑔𝑣)))
76rexbidv 3165 . . . . . . 7 (𝑓 = 𝐹 → (∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣)))
8 eqeq1 2740 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 = ∀𝑔𝑖𝑢𝐹 = ∀𝑔𝑖𝑢))
98rexbidv 3165 . . . . . . 7 (𝑓 = 𝐹 → (∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))
107, 9orbi12d 918 . . . . . 6 (𝑓 = 𝐹 → ((∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))
1110rexbidv 3165 . . . . 5 (𝑓 = 𝐹 → (∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))
1211elabg 3660 . . . 4 (𝐹𝑉 → (𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)} ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))
1312adantl 481 . . 3 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)} ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))
1413orbi2d 915 . 2 ((𝑁 ∈ ω ∧ 𝐹𝑉) → ((𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))))
153, 5, 143bitrd 305 1 ((𝑁 ∈ ω ∧ 𝐹𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2714  wrex 3061  cun 3929  suc csuc 6359  cfv 6536  (class class class)co 7410  ωcom 7866  𝑔cgna 35361  𝑔cgol 35362  Fmlacfmla 35364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-map 8847  df-goel 35367  df-goal 35369  df-sat 35370  df-fmla 35372
This theorem is referenced by:  gonarlem  35421  gonar  35422  goalrlem  35423  goalr  35424  fmlasucdisj  35426
  Copyright terms: Public domain W3C validator