| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfmlasuc | Structured version Visualization version GIF version | ||
| Description: The characterization of a Godel formula of height at least 1. (Contributed by AV, 14-Oct-2023.) |
| Ref | Expression |
|---|---|
| isfmlasuc | ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmlasuc 35369 | . . . 4 ⊢ (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)})) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)})) |
| 3 | 2 | eleq2d 2814 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ 𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}))) |
| 4 | elun 4104 | . . 3 ⊢ (𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)})) | |
| 5 | 4 | a1i 11 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ ((Fmla‘𝑁) ∪ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}))) |
| 6 | eqeq1 2733 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓 = (𝑢⊼𝑔𝑣) ↔ 𝐹 = (𝑢⊼𝑔𝑣))) | |
| 7 | 6 | rexbidv 3153 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ↔ ∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣))) |
| 8 | eqeq1 2733 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓 = ∀𝑔𝑖𝑢 ↔ 𝐹 = ∀𝑔𝑖𝑢)) | |
| 9 | 8 | rexbidv 3153 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢 ↔ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)) |
| 10 | 7, 9 | orbi12d 918 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ↔ (∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))) |
| 11 | 10 | rexbidv 3153 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢) ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))) |
| 12 | 11 | elabg 3632 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)} ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))) |
| 13 | 12 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)} ↔ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢))) |
| 14 | 13 | orbi2d 915 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → ((𝐹 ∈ (Fmla‘𝑁) ∨ 𝐹 ∈ {𝑓 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑓 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑓 = ∀𝑔𝑖𝑢)}) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))) |
| 15 | 3, 5, 14 | 3bitrd 305 | 1 ⊢ ((𝑁 ∈ ω ∧ 𝐹 ∈ 𝑉) → (𝐹 ∈ (Fmla‘suc 𝑁) ↔ (𝐹 ∈ (Fmla‘𝑁) ∨ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝐹 = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝐹 = ∀𝑔𝑖𝑢)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ∪ cun 3901 suc csuc 6309 ‘cfv 6482 (class class class)co 7349 ωcom 7799 ⊼𝑔cgna 35317 ∀𝑔cgol 35318 Fmlacfmla 35320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-map 8755 df-goel 35323 df-goal 35325 df-sat 35326 df-fmla 35328 |
| This theorem is referenced by: gonarlem 35377 gonar 35378 goalrlem 35379 goalr 35380 fmlasucdisj 35382 |
| Copyright terms: Public domain | W3C validator |