| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isewlk | Structured version Visualization version GIF version | ||
| Description: Conditions for a function (sequence of hyperedges) to be an s-walk of edges. (Contributed by AV, 4-Jan-2021.) |
| Ref | Expression |
|---|---|
| ewlksfval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| isewlk | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ewlksfval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | ewlksfval 29582 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))}) |
| 3 | 2 | 3adant3 1132 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))}) |
| 4 | 3 | eleq2d 2819 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))})) |
| 5 | eleq1 2821 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼)) | |
| 6 | fveq2 6828 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
| 7 | 6 | oveq2d 7368 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹))) |
| 8 | fveq1 6827 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓‘(𝑘 − 1)) = (𝐹‘(𝑘 − 1))) | |
| 9 | 8 | fveq2d 6832 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝐼‘(𝑓‘(𝑘 − 1))) = (𝐼‘(𝐹‘(𝑘 − 1)))) |
| 10 | fveq1 6827 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑘) = (𝐹‘𝑘)) | |
| 11 | 10 | fveq2d 6832 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝐼‘(𝑓‘𝑘)) = (𝐼‘(𝐹‘𝑘))) |
| 12 | 9, 11 | ineq12d 4170 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘))) = ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))) |
| 13 | 12 | fveq2d 6832 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))) = (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))) |
| 14 | 13 | breq2d 5105 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))) ↔ 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))) |
| 15 | 7, 14 | raleqbidv 3313 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))) ↔ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))) |
| 16 | 5, 15 | anbi12d 632 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘))))) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
| 17 | 16 | elabg 3628 | . . 3 ⊢ (𝐹 ∈ 𝑈 → (𝐹 ∈ {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))} ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
| 18 | 17 | 3ad2ant3 1135 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))} ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
| 19 | 4, 18 | bitrd 279 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {cab 2711 ∀wral 3048 ∩ cin 3897 class class class wbr 5093 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 1c1 11014 ≤ cle 11154 − cmin 11351 ℕ0*cxnn0 12461 ..^cfzo 13556 ♯chash 14239 Word cword 14422 iEdgciedg 28977 EdgWalks cewlks 29576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-ewlks 29579 |
| This theorem is referenced by: ewlkprop 29584 ewlkle 29586 wlk1ewlk 29620 0ewlk 30096 1ewlk 30097 |
| Copyright terms: Public domain | W3C validator |