Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isewlk | Structured version Visualization version GIF version |
Description: Conditions for a function (sequence of hyperedges) to be an s-walk of edges. (Contributed by AV, 4-Jan-2021.) |
Ref | Expression |
---|---|
ewlksfval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
isewlk | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ewlksfval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | ewlksfval 27968 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))}) |
3 | 2 | 3adant3 1131 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))}) |
4 | 3 | eleq2d 2824 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))})) |
5 | eleq1 2826 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼)) | |
6 | fveq2 6774 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
7 | 6 | oveq2d 7291 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹))) |
8 | fveq1 6773 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓‘(𝑘 − 1)) = (𝐹‘(𝑘 − 1))) | |
9 | 8 | fveq2d 6778 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝐼‘(𝑓‘(𝑘 − 1))) = (𝐼‘(𝐹‘(𝑘 − 1)))) |
10 | fveq1 6773 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑘) = (𝐹‘𝑘)) | |
11 | 10 | fveq2d 6778 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝐼‘(𝑓‘𝑘)) = (𝐼‘(𝐹‘𝑘))) |
12 | 9, 11 | ineq12d 4147 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘))) = ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))) |
13 | 12 | fveq2d 6778 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))) = (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))) |
14 | 13 | breq2d 5086 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))) ↔ 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))) |
15 | 7, 14 | raleqbidv 3336 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))) ↔ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))) |
16 | 5, 15 | anbi12d 631 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘))))) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
17 | 16 | elabg 3607 | . . 3 ⊢ (𝐹 ∈ 𝑈 → (𝐹 ∈ {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))} ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
18 | 17 | 3ad2ant3 1134 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))} ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
19 | 4, 18 | bitrd 278 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∩ cin 3886 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 1c1 10872 ≤ cle 11010 − cmin 11205 ℕ0*cxnn0 12305 ..^cfzo 13382 ♯chash 14044 Word cword 14217 iEdgciedg 27367 EdgWalks cewlks 27962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-ewlks 27965 |
This theorem is referenced by: ewlkprop 27970 ewlkle 27972 wlk1ewlk 28007 0ewlk 28478 1ewlk 28479 |
Copyright terms: Public domain | W3C validator |