Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isewlk | Structured version Visualization version GIF version |
Description: Conditions for a function (sequence of hyperedges) to be an s-walk of edges. (Contributed by AV, 4-Jan-2021.) |
Ref | Expression |
---|---|
ewlksfval.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
isewlk | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ewlksfval.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | ewlksfval 27689 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))}) |
3 | 2 | 3adant3 1134 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))}) |
4 | 3 | eleq2d 2823 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))})) |
5 | eleq1 2825 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼)) | |
6 | fveq2 6717 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
7 | 6 | oveq2d 7229 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (1..^(♯‘𝑓)) = (1..^(♯‘𝐹))) |
8 | fveq1 6716 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓‘(𝑘 − 1)) = (𝐹‘(𝑘 − 1))) | |
9 | 8 | fveq2d 6721 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝐼‘(𝑓‘(𝑘 − 1))) = (𝐼‘(𝐹‘(𝑘 − 1)))) |
10 | fveq1 6716 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑘) = (𝐹‘𝑘)) | |
11 | 10 | fveq2d 6721 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝐼‘(𝑓‘𝑘)) = (𝐼‘(𝐹‘𝑘))) |
12 | 9, 11 | ineq12d 4128 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘))) = ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))) |
13 | 12 | fveq2d 6721 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))) = (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))) |
14 | 13 | breq2d 5065 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))) ↔ 𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))) |
15 | 7, 14 | raleqbidv 3313 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))) ↔ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘)))))) |
16 | 5, 15 | anbi12d 634 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘))))) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
17 | 16 | elabg 3585 | . . 3 ⊢ (𝐹 ∈ 𝑈 → (𝐹 ∈ {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))} ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
18 | 17 | 3ad2ant3 1137 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓‘𝑘)))))} ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
19 | 4, 18 | bitrd 282 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ∧ 𝐹 ∈ 𝑈) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))𝑆 ≤ (♯‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹‘𝑘))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 {cab 2714 ∀wral 3061 ∩ cin 3865 class class class wbr 5053 dom cdm 5551 ‘cfv 6380 (class class class)co 7213 1c1 10730 ≤ cle 10868 − cmin 11062 ℕ0*cxnn0 12162 ..^cfzo 13238 ♯chash 13896 Word cword 14069 iEdgciedg 27088 EdgWalks cewlks 27683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-hash 13897 df-word 14070 df-ewlks 27686 |
This theorem is referenced by: ewlkprop 27691 ewlkle 27693 wlk1ewlk 27727 0ewlk 28197 1ewlk 28198 |
Copyright terms: Public domain | W3C validator |