| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltletrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| xrltletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| xrltletrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | xrltletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrltletr 13051 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5086 ℝ*cxr 11140 < clt 11141 ≤ cle 11142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 |
| This theorem is referenced by: xlt2add 13154 xadddi2 13191 supxrre 13221 infxrre 13231 ixxlb 13262 elicore 13293 elico2 13305 elicc2 13306 caucvgrlem 15575 isnzr2hash 20429 xrsdsreclblem 21344 xblss2ps 24311 xblss2 24312 tgioo 24706 xrge0tsms 24745 xrhmeo 24866 ovoliunlem1 25425 ovoliun 25428 ioombl1lem2 25482 vitalilem4 25534 itg2monolem2 25674 itg2gt0 25683 dvferm1lem 25910 dvferm2lem 25912 lhop1lem 25940 pserdvlem2 26360 abelthlem3 26365 logtayl 26591 xrge0tsmsd 33034 ply1degltdimlem 33627 esum2d 34098 usgrcyclgt2v 35167 relowlssretop 37397 itg2gt0cn 37715 areacirclem5 37752 aks6d1c6lem3 42205 aks6d1c7lem2 42214 xrge0nemnfd 45371 supxrgere 45372 supxrgelem 45376 infrpge 45390 xrralrecnnge 45428 supxrunb3 45437 icoopn 45565 limsupre 45679 limsupre3lem 45770 xlimpnfv 45876 fourierdlem27 46172 fourierdlem87 46231 gsumge0cl 46409 sge0pr 46432 sge0ssre 46435 sge0xaddlem1 46471 meaiuninc3v 46522 pimiooltgt 46748 pimdecfgtioc 46753 preimageiingt 46758 finfdm 46884 |
| Copyright terms: Public domain | W3C validator |