| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltletrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| xrltletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| xrltletrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | xrltletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrltletr 13178 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5124 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 |
| This theorem is referenced by: xlt2add 13281 xadddi2 13318 supxrre 13348 infxrre 13358 ixxlb 13389 elicore 13420 elico2 13432 elicc2 13433 caucvgrlem 15694 isnzr2hash 20484 xrsdsreclblem 21385 xblss2ps 24345 xblss2 24346 tgioo 24740 xrge0tsms 24779 xrhmeo 24900 ovoliunlem1 25460 ovoliun 25463 ioombl1lem2 25517 vitalilem4 25569 itg2monolem2 25709 itg2gt0 25718 dvferm1lem 25945 dvferm2lem 25947 lhop1lem 25975 pserdvlem2 26395 abelthlem3 26400 logtayl 26626 xrge0tsmsd 33061 ply1degltdimlem 33667 esum2d 34129 usgrcyclgt2v 35158 relowlssretop 37386 itg2gt0cn 37704 areacirclem5 37741 aks6d1c6lem3 42190 aks6d1c7lem2 42199 xrge0nemnfd 45326 supxrgere 45327 supxrgelem 45331 infrpge 45345 xrralrecnnge 45384 supxrunb3 45393 icoopn 45521 limsupre 45637 limsupre3lem 45728 xlimpnfv 45834 fourierdlem27 46130 fourierdlem87 46189 gsumge0cl 46367 sge0pr 46390 sge0ssre 46393 sge0xaddlem1 46429 meaiuninc3v 46480 pimiooltgt 46706 pimdecfgtioc 46711 preimageiingt 46716 finfdm 46842 |
| Copyright terms: Public domain | W3C validator |