Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrltletrd | Structured version Visualization version GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xrltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
xrltletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
xrltletrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | xrltletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
6 | xrltletr 12820 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1369 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 695 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: xlt2add 12923 xadddi2 12960 supxrre 12990 infxrre 12999 ixxlb 13030 elicore 13060 elico2 13072 elicc2 13073 caucvgrlem 15312 isnzr2hash 20448 xrsdsreclblem 20556 xblss2ps 23462 xblss2 23463 tgioo 23865 xrge0tsms 23903 xrhmeo 24015 ovoliunlem1 24571 ovoliun 24574 ioombl1lem2 24628 vitalilem4 24680 itg2monolem2 24821 itg2gt0 24830 dvferm1lem 25053 dvferm2lem 25055 lhop1lem 25082 pserdvlem2 25492 abelthlem3 25497 logtayl 25720 xrge0tsmsd 31219 esum2d 31961 usgrcyclgt2v 32993 relowlssretop 35461 itg2gt0cn 35759 areacirclem5 35796 xrge0nemnfd 42761 supxrgere 42762 supxrgelem 42766 infrpge 42780 xrralrecnnge 42820 supxrunb3 42829 icoopn 42953 limsupre 43072 limsupre3lem 43163 xlimpnfv 43269 fourierdlem27 43565 fourierdlem87 43624 gsumge0cl 43799 sge0pr 43822 sge0ssre 43825 sge0xaddlem1 43861 meaiuninc3v 43912 pimiooltgt 44135 pimdecfgtioc 44139 preimageiingt 44144 |
Copyright terms: Public domain | W3C validator |