| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltletrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| xrltletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| xrltletrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | xrltletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrltletr 13093 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: xlt2add 13196 xadddi2 13233 supxrre 13263 infxrre 13273 ixxlb 13304 elicore 13335 elico2 13347 elicc2 13348 caucvgrlem 15615 isnzr2hash 20404 xrsdsreclblem 21305 xblss2ps 24265 xblss2 24266 tgioo 24660 xrge0tsms 24699 xrhmeo 24820 ovoliunlem1 25379 ovoliun 25382 ioombl1lem2 25436 vitalilem4 25488 itg2monolem2 25628 itg2gt0 25637 dvferm1lem 25864 dvferm2lem 25866 lhop1lem 25894 pserdvlem2 26314 abelthlem3 26319 logtayl 26545 xrge0tsmsd 32975 ply1degltdimlem 33591 esum2d 34056 usgrcyclgt2v 35091 relowlssretop 37324 itg2gt0cn 37642 areacirclem5 37679 aks6d1c6lem3 42133 aks6d1c7lem2 42142 xrge0nemnfd 45301 supxrgere 45302 supxrgelem 45306 infrpge 45320 xrralrecnnge 45359 supxrunb3 45368 icoopn 45496 limsupre 45612 limsupre3lem 45703 xlimpnfv 45809 fourierdlem27 46105 fourierdlem87 46164 gsumge0cl 46342 sge0pr 46365 sge0ssre 46368 sge0xaddlem1 46404 meaiuninc3v 46455 pimiooltgt 46681 pimdecfgtioc 46686 preimageiingt 46691 finfdm 46817 |
| Copyright terms: Public domain | W3C validator |