MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltletrd Structured version   Visualization version   GIF version

Theorem xrltletrd 13009
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
xrlttrd.1 (𝜑𝐴 ∈ ℝ*)
xrlttrd.2 (𝜑𝐵 ∈ ℝ*)
xrlttrd.3 (𝜑𝐶 ∈ ℝ*)
xrltletrd.4 (𝜑𝐴 < 𝐵)
xrltletrd.5 (𝜑𝐵𝐶)
Assertion
Ref Expression
xrltletrd (𝜑𝐴 < 𝐶)

Proof of Theorem xrltletrd
StepHypRef Expression
1 xrltletrd.4 . 2 (𝜑𝐴 < 𝐵)
2 xrltletrd.5 . 2 (𝜑𝐵𝐶)
3 xrlttrd.1 . . 3 (𝜑𝐴 ∈ ℝ*)
4 xrlttrd.2 . . 3 (𝜑𝐵 ∈ ℝ*)
5 xrlttrd.3 . . 3 (𝜑𝐶 ∈ ℝ*)
6 xrltletr 13005 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
73, 4, 5, 6syl3anc 1372 . 2 (𝜑 → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
81, 2, 7mp2and 698 1 (𝜑𝐴 < 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107   class class class wbr 5104  *cxr 11122   < clt 11123  cle 11124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-pre-lttri 11059  ax-pre-lttrn 11060
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-br 5105  df-opab 5167  df-mpt 5188  df-id 5529  df-po 5543  df-so 5544  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129
This theorem is referenced by:  xlt2add  13108  xadddi2  13145  supxrre  13175  infxrre  13184  ixxlb  13215  elicore  13245  elico2  13257  elicc2  13258  caucvgrlem  15492  isnzr2hash  20657  xrsdsreclblem  20766  xblss2ps  23676  xblss2  23677  tgioo  24081  xrge0tsms  24119  xrhmeo  24231  ovoliunlem1  24788  ovoliun  24791  ioombl1lem2  24845  vitalilem4  24897  itg2monolem2  25038  itg2gt0  25047  dvferm1lem  25270  dvferm2lem  25272  lhop1lem  25299  pserdvlem2  25709  abelthlem3  25714  logtayl  25937  xrge0tsmsd  31681  esum2d  32453  usgrcyclgt2v  33486  relowlssretop  35720  itg2gt0cn  36019  areacirclem5  36056  xrge0nemnfd  43292  supxrgere  43293  supxrgelem  43297  infrpge  43311  xrralrecnnge  43351  supxrunb3  43360  icoopn  43485  limsupre  43604  limsupre3lem  43695  xlimpnfv  43801  fourierdlem27  44097  fourierdlem87  44156  gsumge0cl  44334  sge0pr  44357  sge0ssre  44360  sge0xaddlem1  44396  meaiuninc3v  44447  pimiooltgt  44673  pimdecfgtioc  44678  preimageiingt  44683
  Copyright terms: Public domain W3C validator