Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onwf | Structured version Visualization version GIF version |
Description: The ordinals are all well-founded. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
onwf | ⊢ On ⊆ ∪ (𝑅1 “ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1fnon 9602 | . . 3 ⊢ 𝑅1 Fn On | |
2 | 1 | fndmi 6575 | . 2 ⊢ dom 𝑅1 = On |
3 | rankonidlem 9663 | . . . 4 ⊢ (𝑥 ∈ dom 𝑅1 → (𝑥 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) | |
4 | 3 | simpld 495 | . . 3 ⊢ (𝑥 ∈ dom 𝑅1 → 𝑥 ∈ ∪ (𝑅1 “ On)) |
5 | 4 | ssriv 3934 | . 2 ⊢ dom 𝑅1 ⊆ ∪ (𝑅1 “ On) |
6 | 2, 5 | eqsstrri 3965 | 1 ⊢ On ⊆ ∪ (𝑅1 “ On) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ⊆ wss 3896 ∪ cuni 4849 dom cdm 5607 “ cima 5610 Oncon0 6288 ‘cfv 6465 𝑅1cr1 9597 rankcrnk 9598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-om 7759 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-r1 9599 df-rank 9600 |
This theorem is referenced by: dfac12r 9981 r1tskina 10617 |
Copyright terms: Public domain | W3C validator |