![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onwf | Structured version Visualization version GIF version |
Description: The ordinals are all well-founded. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
onwf | ⊢ On ⊆ ∪ (𝑅1 “ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1fnon 9838 | . . 3 ⊢ 𝑅1 Fn On | |
2 | 1 | fndmi 6685 | . 2 ⊢ dom 𝑅1 = On |
3 | rankonidlem 9899 | . . . 4 ⊢ (𝑥 ∈ dom 𝑅1 → (𝑥 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝑥) = 𝑥)) | |
4 | 3 | simpld 494 | . . 3 ⊢ (𝑥 ∈ dom 𝑅1 → 𝑥 ∈ ∪ (𝑅1 “ On)) |
5 | 4 | ssriv 4012 | . 2 ⊢ dom 𝑅1 ⊆ ∪ (𝑅1 “ On) |
6 | 2, 5 | eqsstrri 4044 | 1 ⊢ On ⊆ ∪ (𝑅1 “ On) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 dom cdm 5700 “ cima 5703 Oncon0 6397 ‘cfv 6575 𝑅1cr1 9833 rankcrnk 9834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-om 7906 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-r1 9835 df-rank 9836 |
This theorem is referenced by: dfac12r 10218 r1tskina 10853 |
Copyright terms: Public domain | W3C validator |