Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > pjoml4i | Structured version Visualization version GIF version |
Description: Variation of orthomodular law. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjoml2.1 | ⊢ 𝐴 ∈ Cℋ |
pjoml2.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
pjoml4i | ⊢ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) = (𝐴 ∨ℋ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4119 | . . 3 ⊢ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ⊆ 𝐵 | |
2 | pjoml2.2 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
3 | pjoml2.1 | . . . . . . 7 ⊢ 𝐴 ∈ Cℋ | |
4 | 3 | choccli 29242 | . . . . . 6 ⊢ (⊥‘𝐴) ∈ Cℋ |
5 | 2 | choccli 29242 | . . . . . 6 ⊢ (⊥‘𝐵) ∈ Cℋ |
6 | 4, 5 | chjcli 29392 | . . . . 5 ⊢ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∈ Cℋ |
7 | 2, 6 | chincli 29395 | . . . 4 ⊢ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∈ Cℋ |
8 | 7, 2, 3 | chlej2i 29409 | . . 3 ⊢ ((𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ⊆ 𝐵 → (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) ⊆ (𝐴 ∨ℋ 𝐵)) |
9 | 1, 8 | ax-mp 5 | . 2 ⊢ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) ⊆ (𝐴 ∨ℋ 𝐵) |
10 | 3, 7 | chub1i 29404 | . . 3 ⊢ 𝐴 ⊆ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) |
11 | 3, 2 | chdmm1i 29412 | . . . . . . . 8 ⊢ (⊥‘(𝐴 ∩ 𝐵)) = ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) |
12 | 11 | ineq1i 4099 | . . . . . . 7 ⊢ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵) = (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ 𝐵) |
13 | incom 4091 | . . . . . . 7 ⊢ (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ 𝐵) = (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) | |
14 | 12, 13 | eqtri 2761 | . . . . . 6 ⊢ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵) = (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) |
15 | 14 | oveq2i 7181 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) ∨ℋ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵)) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) |
16 | inss2 4120 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
17 | 3, 2 | chincli 29395 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
18 | 17, 2 | pjoml2i 29520 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∨ℋ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵)) = 𝐵) |
19 | 16, 18 | ax-mp 5 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) ∨ℋ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵)) = 𝐵 |
20 | 15, 19 | eqtr3i 2763 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) = 𝐵 |
21 | inss1 4119 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
22 | 17, 3, 7 | chlej1i 29408 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → ((𝐴 ∩ 𝐵) ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) ⊆ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵))))) |
23 | 21, 22 | ax-mp 5 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) ⊆ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) |
24 | 20, 23 | eqsstrri 3912 | . . 3 ⊢ 𝐵 ⊆ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) |
25 | 3, 7 | chjcli 29392 | . . . 4 ⊢ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) ∈ Cℋ |
26 | 3, 2, 25 | chlubii 29407 | . . 3 ⊢ ((𝐴 ⊆ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) ∧ 𝐵 ⊆ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵))))) → (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵))))) |
27 | 10, 24, 26 | mp2an 692 | . 2 ⊢ (𝐴 ∨ℋ 𝐵) ⊆ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) |
28 | 9, 27 | eqssi 3893 | 1 ⊢ (𝐴 ∨ℋ (𝐵 ∩ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)))) = (𝐴 ∨ℋ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2114 ∩ cin 3842 ⊆ wss 3843 ‘cfv 6339 (class class class)co 7170 Cℋ cch 28864 ⊥cort 28865 ∨ℋ chj 28868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cc 9935 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 ax-addf 10694 ax-mulf 10695 ax-hilex 28934 ax-hfvadd 28935 ax-hvcom 28936 ax-hvass 28937 ax-hv0cl 28938 ax-hvaddid 28939 ax-hfvmul 28940 ax-hvmulid 28941 ax-hvmulass 28942 ax-hvdistr1 28943 ax-hvdistr2 28944 ax-hvmul0 28945 ax-hfi 29014 ax-his1 29017 ax-his2 29018 ax-his3 29019 ax-his4 29020 ax-hcompl 29137 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-oadd 8135 df-omul 8136 df-er 8320 df-map 8439 df-pm 8440 df-ixp 8508 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-fi 8948 df-sup 8979 df-inf 8980 df-oi 9047 df-card 9441 df-acn 9444 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-xmul 12592 df-ioo 12825 df-ico 12827 df-icc 12828 df-fz 12982 df-fzo 13125 df-fl 13253 df-seq 13461 df-exp 13522 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-rlim 14936 df-sum 15136 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-starv 16683 df-sca 16684 df-vsca 16685 df-ip 16686 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-hom 16692 df-cco 16693 df-rest 16799 df-topn 16800 df-0g 16818 df-gsum 16819 df-topgen 16820 df-pt 16821 df-prds 16824 df-xrs 16878 df-qtop 16883 df-imas 16884 df-xps 16886 df-mre 16960 df-mrc 16961 df-acs 16963 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-submnd 18073 df-mulg 18343 df-cntz 18565 df-cmn 19026 df-psmet 20209 df-xmet 20210 df-met 20211 df-bl 20212 df-mopn 20213 df-fbas 20214 df-fg 20215 df-cnfld 20218 df-top 21645 df-topon 21662 df-topsp 21684 df-bases 21697 df-cld 21770 df-ntr 21771 df-cls 21772 df-nei 21849 df-cn 21978 df-cnp 21979 df-lm 21980 df-haus 22066 df-tx 22313 df-hmeo 22506 df-fil 22597 df-fm 22689 df-flim 22690 df-flf 22691 df-xms 23073 df-ms 23074 df-tms 23075 df-cfil 24007 df-cau 24008 df-cmet 24009 df-grpo 28428 df-gid 28429 df-ginv 28430 df-gdiv 28431 df-ablo 28480 df-vc 28494 df-nv 28527 df-va 28530 df-ba 28531 df-sm 28532 df-0v 28533 df-vs 28534 df-nmcv 28535 df-ims 28536 df-dip 28636 df-ssp 28657 df-ph 28748 df-cbn 28798 df-hnorm 28903 df-hba 28904 df-hvsub 28906 df-hlim 28907 df-hcau 28908 df-sh 29142 df-ch 29156 df-oc 29187 df-ch0 29188 df-shs 29243 df-chj 29245 |
This theorem is referenced by: osumcor2i 29579 |
Copyright terms: Public domain | W3C validator |