Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2nn | Structured version Visualization version GIF version |
Description: 2 is a positive integer. (Contributed by NM, 20-Aug-2001.) |
Ref | Expression |
---|---|
2nn | ⊢ 2 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12019 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1nn 11967 | . . 3 ⊢ 1 ∈ ℕ | |
3 | peano2nn 11968 | . . 3 ⊢ (1 ∈ ℕ → (1 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (1 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ 2 ∈ ℕ |
Copyright terms: Public domain | W3C validator |