| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3nn | Structured version Visualization version GIF version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn | ⊢ 3 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12250 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2nn 12259 | . . 3 ⊢ 2 ∈ ℕ | |
| 3 | peano2nn 12198 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 3 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 1c1 11069 + caddc 11071 ℕcn 12186 2c2 12241 3c3 12242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-2 12249 df-3 12250 |
| This theorem is referenced by: 4nn 12269 3ne0 12292 3nn0 12460 3z 12566 ige3m2fz 13509 fvf1tp 13751 tpf1ofv0 14461 tpf1ofv1 14462 tpf1ofv2 14463 tpfo 14465 f1oun2prg 14883 01sqrexlem7 15214 bpoly4 16025 fsumcube 16026 sin01bnd 16153 egt2lt3 16174 rpnnen2lem2 16183 rpnnen2lem3 16184 rpnnen2lem4 16185 rpnnen2lem9 16190 rpnnen2lem11 16192 5ndvds3 16383 3lcm2e6woprm 16585 3lcm2e6 16702 prmo3 17012 5prm 17079 6nprm 17080 7prm 17081 9nprm 17083 11prm 17085 13prm 17086 17prm 17087 19prm 17088 23prm 17089 prmlem2 17090 37prm 17091 43prm 17092 83prm 17093 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem5 17105 2503lem1 17107 2503lem2 17108 2503lem3 17109 4001lem4 17114 4001prm 17115 mulrndx 17257 mulridx 17258 rngstr 17261 unifndx 17358 unifid 17359 unifndxnn 17360 slotsdifunifndx 17364 lt6abl 19825 cnfldstr 21266 cnfldstrOLD 21281 tangtx 26414 1cubrlem 26751 1cubr 26752 dcubic1lem 26753 dcubic2 26754 dcubic 26756 mcubic 26757 cubic2 26758 cubic 26759 quartlem3 26769 quart 26771 log2cnv 26854 log2tlbnd 26855 log2ublem1 26856 log2ublem2 26857 log2ub 26859 ppiublem1 27113 ppiub 27115 chtub 27123 bposlem3 27197 bposlem4 27198 bposlem5 27199 bposlem6 27200 bposlem9 27203 lgsdir2lem5 27240 dchrvmasumlem2 27409 dchrvmasumlema 27411 pntleml 27522 tgcgr4 28458 axlowdimlem16 28884 axlowdimlem17 28885 usgrexmpldifpr 29185 upgr3v3e3cycl 30109 ex-cnv 30366 ex-rn 30369 ex-mod 30378 2sqr3minply 33770 cos9thpiminplylem1 33772 cos9thpiminplylem2 33773 cos9thpiminplylem5 33776 fib4 34395 circlevma 34633 circlemethhgt 34634 hgt750lema 34648 sinccvglem 35659 cnndvlem1 36525 mblfinlem3 37653 itg2addnclem2 37666 itg2addnc 37668 lcm3un 42003 aks4d1p1 42064 3cubeslem2 42673 3cubeslem3r 42675 3cubes 42678 rmydioph 43003 rmxdioph 43005 expdiophlem2 43011 expdioph 43012 amgm3d 44188 lhe4.4ex1a 44318 modm2nep1 47367 modm1nep2 47369 257prm 47562 fmtno4prmfac193 47574 fmtno4nprmfac193 47575 3ndvds4 47596 139prmALT 47597 31prm 47598 127prm 47600 41prothprm 47620 341fppr2 47735 nfermltl2rev 47744 wtgoldbnnsum4prm 47803 bgoldbnnsum3prm 47805 bgoldbtbndlem1 47806 tgoldbach 47818 grtriclwlk3 47944 gpg3kgrtriexlem2 48075 gpg3kgrtriexlem5 48078 gpg3kgrtriexlem6 48079 gpg3kgrtriex 48080 |
| Copyright terms: Public domain | W3C validator |