| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3nn | Structured version Visualization version GIF version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn | ⊢ 3 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12302 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2nn 12311 | . . 3 ⊢ 2 ∈ ℕ | |
| 3 | peano2nn 12250 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ 3 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7403 1c1 11128 + caddc 11130 ℕcn 12238 2c2 12293 3c3 12294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-1cn 11185 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-2 12301 df-3 12302 |
| This theorem is referenced by: 4nn 12321 3ne0 12344 3nn0 12517 3z 12623 ige3m2fz 13563 fvf1tp 13804 tpf1ofv0 14512 tpf1ofv1 14513 tpf1ofv2 14514 tpfo 14516 f1oun2prg 14934 01sqrexlem7 15265 bpoly4 16073 fsumcube 16074 sin01bnd 16201 egt2lt3 16222 rpnnen2lem2 16231 rpnnen2lem3 16232 rpnnen2lem4 16233 rpnnen2lem9 16238 rpnnen2lem11 16240 5ndvds3 16430 3lcm2e6woprm 16632 3lcm2e6 16749 prmo3 17059 5prm 17126 6nprm 17127 7prm 17128 9nprm 17130 11prm 17132 13prm 17133 17prm 17134 19prm 17135 23prm 17136 prmlem2 17137 37prm 17138 43prm 17139 83prm 17140 139prm 17141 163prm 17142 317prm 17143 631prm 17144 1259lem5 17152 2503lem1 17154 2503lem2 17155 2503lem3 17156 4001lem4 17161 4001prm 17162 mulrndx 17306 mulridx 17307 rngstr 17310 unifndx 17407 unifid 17408 unifndxnn 17409 slotsdifunifndx 17413 lt6abl 19874 cnfldstr 21315 cnfldstrOLD 21330 tangtx 26464 1cubrlem 26801 1cubr 26802 dcubic1lem 26803 dcubic2 26804 dcubic 26806 mcubic 26807 cubic2 26808 cubic 26809 quartlem3 26819 quart 26821 log2cnv 26904 log2tlbnd 26905 log2ublem1 26906 log2ublem2 26907 log2ub 26909 ppiublem1 27163 ppiub 27165 chtub 27173 bposlem3 27247 bposlem4 27248 bposlem5 27249 bposlem6 27250 bposlem9 27253 lgsdir2lem5 27290 dchrvmasumlem2 27459 dchrvmasumlema 27461 pntleml 27572 tgcgr4 28456 axlowdimlem16 28882 axlowdimlem17 28883 usgrexmpldifpr 29183 upgr3v3e3cycl 30107 ex-cnv 30364 ex-rn 30367 ex-mod 30376 2sqr3minply 33760 cos9thpiminplylem1 33762 cos9thpiminplylem2 33763 cos9thpiminplylem5 33766 fib4 34382 circlevma 34620 circlemethhgt 34621 hgt750lema 34635 sinccvglem 35640 cnndvlem1 36501 mblfinlem3 37629 itg2addnclem2 37642 itg2addnc 37644 lcm3un 41974 aks4d1p1 42035 3cubeslem2 42655 3cubeslem3r 42657 3cubes 42660 rmydioph 42985 rmxdioph 42987 expdiophlem2 42993 expdioph 42994 amgm3d 44170 lhe4.4ex1a 44301 257prm 47523 fmtno4prmfac193 47535 fmtno4nprmfac193 47536 3ndvds4 47557 139prmALT 47558 31prm 47559 127prm 47561 41prothprm 47581 341fppr2 47696 nfermltl2rev 47705 wtgoldbnnsum4prm 47764 bgoldbnnsum3prm 47766 bgoldbtbndlem1 47767 tgoldbach 47779 grtriclwlk3 47905 gpg3kgrtriexlem2 48034 gpg3kgrtriexlem5 48037 gpg3kgrtriexlem6 48038 gpg3kgrtriex 48039 gpg5grlic 48041 |
| Copyright terms: Public domain | W3C validator |