| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3nn | Structured version Visualization version GIF version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn | ⊢ 3 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12226 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2nn 12235 | . . 3 ⊢ 2 ∈ ℕ | |
| 3 | peano2nn 12174 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 3 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 1c1 11045 + caddc 11047 ℕcn 12162 2c2 12217 3c3 12218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-2 12225 df-3 12226 |
| This theorem is referenced by: 4nn 12245 3ne0 12268 3nn0 12436 3z 12542 ige3m2fz 13485 fvf1tp 13727 tpf1ofv0 14437 tpf1ofv1 14438 tpf1ofv2 14439 tpfo 14441 f1oun2prg 14859 01sqrexlem7 15190 bpoly4 16001 fsumcube 16002 sin01bnd 16129 egt2lt3 16150 rpnnen2lem2 16159 rpnnen2lem3 16160 rpnnen2lem4 16161 rpnnen2lem9 16166 rpnnen2lem11 16168 5ndvds3 16359 3lcm2e6woprm 16561 3lcm2e6 16678 prmo3 16988 5prm 17055 6nprm 17056 7prm 17057 9nprm 17059 11prm 17061 13prm 17062 17prm 17063 19prm 17064 23prm 17065 prmlem2 17066 37prm 17067 43prm 17068 83prm 17069 139prm 17070 163prm 17071 317prm 17072 631prm 17073 1259lem5 17081 2503lem1 17083 2503lem2 17084 2503lem3 17085 4001lem4 17090 4001prm 17091 mulrndx 17233 mulridx 17234 rngstr 17237 unifndx 17334 unifid 17335 unifndxnn 17336 slotsdifunifndx 17340 lt6abl 19801 cnfldstr 21242 cnfldstrOLD 21257 tangtx 26390 1cubrlem 26727 1cubr 26728 dcubic1lem 26729 dcubic2 26730 dcubic 26732 mcubic 26733 cubic2 26734 cubic 26735 quartlem3 26745 quart 26747 log2cnv 26830 log2tlbnd 26831 log2ublem1 26832 log2ublem2 26833 log2ub 26835 ppiublem1 27089 ppiub 27091 chtub 27099 bposlem3 27173 bposlem4 27174 bposlem5 27175 bposlem6 27176 bposlem9 27179 lgsdir2lem5 27216 dchrvmasumlem2 27385 dchrvmasumlema 27387 pntleml 27498 tgcgr4 28434 axlowdimlem16 28860 axlowdimlem17 28861 usgrexmpldifpr 29161 upgr3v3e3cycl 30082 ex-cnv 30339 ex-rn 30342 ex-mod 30351 2sqr3minply 33743 cos9thpiminplylem1 33745 cos9thpiminplylem2 33746 cos9thpiminplylem5 33749 fib4 34368 circlevma 34606 circlemethhgt 34607 hgt750lema 34621 sinccvglem 35632 cnndvlem1 36498 mblfinlem3 37626 itg2addnclem2 37639 itg2addnc 37641 lcm3un 41976 aks4d1p1 42037 3cubeslem2 42646 3cubeslem3r 42648 3cubes 42651 rmydioph 42976 rmxdioph 42978 expdiophlem2 42984 expdioph 42985 amgm3d 44161 lhe4.4ex1a 44291 modm2nep1 47340 modm1nep2 47342 257prm 47535 fmtno4prmfac193 47547 fmtno4nprmfac193 47548 3ndvds4 47569 139prmALT 47570 31prm 47571 127prm 47573 41prothprm 47593 341fppr2 47708 nfermltl2rev 47717 wtgoldbnnsum4prm 47776 bgoldbnnsum3prm 47778 bgoldbtbndlem1 47779 tgoldbach 47791 grtriclwlk3 47917 gpg3kgrtriexlem2 48048 gpg3kgrtriexlem5 48051 gpg3kgrtriexlem6 48052 gpg3kgrtriex 48053 |
| Copyright terms: Public domain | W3C validator |