![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3nn | Structured version Visualization version GIF version |
Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3nn | ⊢ 3 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 11549 | . 2 ⊢ 3 = (2 + 1) | |
2 | 2nn 11558 | . . 3 ⊢ 2 ∈ ℕ | |
3 | peano2nn 11498 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2879 | 1 ⊢ 3 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2081 (class class class)co 7016 1c1 10384 + caddc 10386 ℕcn 11486 2c2 11540 3c3 11541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-1cn 10441 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-ov 7019 df-om 7437 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-nn 11487 df-2 11548 df-3 11549 |
This theorem is referenced by: 4nn 11568 3nn0 11763 3z 11864 ige3m2fz 12781 f1oun2prg 14115 sqrlem7 14442 bpoly4 15246 fsumcube 15247 sin01bnd 15371 egt2lt3 15392 rpnnen2lem2 15401 rpnnen2lem3 15402 rpnnen2lem4 15403 rpnnen2lem9 15408 rpnnen2lem11 15410 3lcm2e6woprm 15788 3lcm2e6 15901 prmo3 16206 5prm 16271 6nprm 16272 7prm 16273 9nprm 16275 11prm 16277 13prm 16278 17prm 16279 19prm 16280 23prm 16281 prmlem2 16282 37prm 16283 43prm 16284 83prm 16285 139prm 16286 163prm 16287 317prm 16288 631prm 16289 1259lem5 16297 2503lem1 16299 2503lem2 16300 2503lem3 16301 4001lem4 16306 4001prm 16307 mulrndx 16444 mulrid 16445 rngstr 16448 ressmulr 16454 unifndx 16506 unifid 16507 lt6abl 18736 sramulr 19642 opsrmulr 19948 cnfldstr 20229 cnfldfun 20239 zlmmulr 20349 znmul 20370 ressunif 22554 tuslem 22559 tngmulr 22936 tangtx 24774 1cubrlem 25100 1cubr 25101 dcubic1lem 25102 dcubic2 25103 dcubic 25105 mcubic 25106 cubic2 25107 cubic 25108 quartlem3 25118 quart 25120 log2cnv 25204 log2tlbnd 25205 log2ublem1 25206 log2ublem2 25207 log2ub 25209 ppiublem1 25460 ppiub 25462 chtub 25470 bposlem3 25544 bposlem4 25545 bposlem5 25546 bposlem6 25547 bposlem9 25550 lgsdir2lem5 25587 dchrvmasumlem2 25756 dchrvmasumlema 25758 pntleml 25869 tgcgr4 25999 axlowdimlem16 26426 axlowdimlem17 26427 usgrexmpldifpr 26723 upgr3v3e3cycl 27646 ex-cnv 27908 ex-rn 27911 ex-mod 27920 resvmulr 30562 fib4 31279 circlevma 31530 circlemethhgt 31531 hgt750lema 31545 sinccvglem 32523 cnndvlem1 33485 mblfinlem3 34462 itg2addnclem2 34475 itg2addnclem3 34476 itg2addnc 34477 hlhilsmul 38608 rmydioph 39096 rmxdioph 39098 expdiophlem2 39104 expdioph 39105 amgm3d 40038 lhe4.4ex1a 40199 257prm 43205 fmtno4prmfac193 43217 fmtno4nprmfac193 43218 3ndvds4 43240 139prmALT 43241 31prm 43242 127prm 43245 41prothprm 43266 341fppr2 43381 nfermltl2rev 43390 wtgoldbnnsum4prm 43449 bgoldbnnsum3prm 43451 bgoldbtbndlem1 43452 tgoldbach 43464 |
Copyright terms: Public domain | W3C validator |