| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3nn | Structured version Visualization version GIF version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn | ⊢ 3 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12184 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2nn 12193 | . . 3 ⊢ 2 ∈ ℕ | |
| 3 | peano2nn 12132 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 3 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7341 1c1 11002 + caddc 11004 ℕcn 12120 2c2 12175 3c3 12176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-1cn 11059 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-2 12183 df-3 12184 |
| This theorem is referenced by: 4nn 12203 3ne0 12226 3nn0 12394 3z 12500 ige3m2fz 13443 fvf1tp 13688 tpf1ofv0 14398 tpf1ofv1 14399 tpf1ofv2 14400 tpfo 14402 f1oun2prg 14819 01sqrexlem7 15150 bpoly4 15961 fsumcube 15962 sin01bnd 16089 egt2lt3 16110 rpnnen2lem2 16119 rpnnen2lem3 16120 rpnnen2lem4 16121 rpnnen2lem9 16126 rpnnen2lem11 16128 5ndvds3 16319 3lcm2e6woprm 16521 3lcm2e6 16638 prmo3 16948 5prm 17015 6nprm 17016 7prm 17017 9nprm 17019 11prm 17021 13prm 17022 17prm 17023 19prm 17024 23prm 17025 prmlem2 17026 37prm 17027 43prm 17028 83prm 17029 139prm 17030 163prm 17031 317prm 17032 631prm 17033 1259lem5 17041 2503lem1 17043 2503lem2 17044 2503lem3 17045 4001lem4 17050 4001prm 17051 mulrndx 17193 mulridx 17194 rngstr 17197 unifndx 17294 unifid 17295 unifndxnn 17296 slotsdifunifndx 17300 lt6abl 19802 cnfldstr 21288 cnfldstrOLD 21303 tangtx 26436 1cubrlem 26773 1cubr 26774 dcubic1lem 26775 dcubic2 26776 dcubic 26778 mcubic 26779 cubic2 26780 cubic 26781 quartlem3 26791 quart 26793 log2cnv 26876 log2tlbnd 26877 log2ublem1 26878 log2ublem2 26879 log2ub 26881 ppiublem1 27135 ppiub 27137 chtub 27145 bposlem3 27219 bposlem4 27220 bposlem5 27221 bposlem6 27222 bposlem9 27225 lgsdir2lem5 27262 dchrvmasumlem2 27431 dchrvmasumlema 27433 pntleml 27544 tgcgr4 28504 axlowdimlem16 28930 axlowdimlem17 28931 usgrexmpldifpr 29231 upgr3v3e3cycl 30152 ex-cnv 30409 ex-rn 30412 ex-mod 30421 2sqr3minply 33785 cos9thpiminplylem1 33787 cos9thpiminplylem2 33788 cos9thpiminplylem5 33791 fib4 34409 circlevma 34647 circlemethhgt 34648 hgt750lema 34662 sinccvglem 35708 cnndvlem1 36571 mblfinlem3 37699 itg2addnclem2 37712 itg2addnc 37714 lcm3un 42048 aks4d1p1 42109 3cubeslem2 42718 3cubeslem3r 42720 3cubes 42723 rmydioph 43047 rmxdioph 43049 expdiophlem2 43055 expdioph 43056 amgm3d 44232 lhe4.4ex1a 44362 modm2nep1 47397 modm1nep2 47399 257prm 47592 fmtno4prmfac193 47604 fmtno4nprmfac193 47605 3ndvds4 47626 139prmALT 47627 31prm 47628 127prm 47630 41prothprm 47650 341fppr2 47765 nfermltl2rev 47774 wtgoldbnnsum4prm 47833 bgoldbnnsum3prm 47835 bgoldbtbndlem1 47836 tgoldbach 47848 grtriclwlk3 47976 gpg3kgrtriexlem2 48115 gpg3kgrtriexlem5 48118 gpg3kgrtriexlem6 48119 gpg3kgrtriex 48120 |
| Copyright terms: Public domain | W3C validator |