![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3nn | Structured version Visualization version GIF version |
Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3nn | ⊢ 3 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12327 | . 2 ⊢ 3 = (2 + 1) | |
2 | 2nn 12336 | . . 3 ⊢ 2 ∈ ℕ | |
3 | peano2nn 12275 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 3 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7430 1c1 11153 + caddc 11155 ℕcn 12263 2c2 12318 3c3 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-1cn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-nn 12264 df-2 12326 df-3 12327 |
This theorem is referenced by: 4nn 12346 3nn0 12541 3z 12647 ige3m2fz 13584 fvf1tp 13825 tpf1ofv0 14531 tpf1ofv1 14532 tpf1ofv2 14533 tpfo 14535 f1oun2prg 14952 01sqrexlem7 15283 bpoly4 16091 fsumcube 16092 sin01bnd 16217 egt2lt3 16238 rpnnen2lem2 16247 rpnnen2lem3 16248 rpnnen2lem4 16249 rpnnen2lem9 16254 rpnnen2lem11 16256 5ndvds3 16446 3lcm2e6woprm 16648 3lcm2e6 16765 prmo3 17074 5prm 17142 6nprm 17143 7prm 17144 9nprm 17146 11prm 17148 13prm 17149 17prm 17150 19prm 17151 23prm 17152 prmlem2 17153 37prm 17154 43prm 17155 83prm 17156 139prm 17157 163prm 17158 317prm 17159 631prm 17160 1259lem5 17168 2503lem1 17170 2503lem2 17171 2503lem3 17172 4001lem4 17177 4001prm 17178 mulrndx 17338 mulridx 17339 rngstr 17343 unifndx 17440 unifid 17441 unifndxnn 17442 slotsdifunifndx 17446 lt6abl 19927 sramulrOLD 21199 cnfldstr 21383 cnfldstrOLD 21398 cnfldfunALTOLDOLD 21410 zlmmulrOLD 21551 znmulOLD 21577 opsrmulrOLD 22091 tuslemOLD 24291 tngmulrOLD 24676 tangtx 26561 1cubrlem 26898 1cubr 26899 dcubic1lem 26900 dcubic2 26901 dcubic 26903 mcubic 26904 cubic2 26905 cubic 26906 quartlem3 26916 quart 26918 log2cnv 27001 log2tlbnd 27002 log2ublem1 27003 log2ublem2 27004 log2ub 27006 ppiublem1 27260 ppiub 27262 chtub 27270 bposlem3 27344 bposlem4 27345 bposlem5 27346 bposlem6 27347 bposlem9 27350 lgsdir2lem5 27387 dchrvmasumlem2 27556 dchrvmasumlema 27558 pntleml 27669 tgcgr4 28553 axlowdimlem16 28986 axlowdimlem17 28987 usgrexmpldifpr 29289 upgr3v3e3cycl 30208 ex-cnv 30465 ex-rn 30468 ex-mod 30477 resvmulrOLD 33345 2sqr3minply 33752 fib4 34385 circlevma 34635 circlemethhgt 34636 hgt750lema 34650 sinccvglem 35656 cnndvlem1 36519 mblfinlem3 37645 itg2addnclem2 37658 itg2addnc 37660 hlhilsmulOLD 41927 lcm3un 41996 aks4d1p1 42057 3cubeslem2 42672 3cubeslem3r 42674 3cubes 42677 rmydioph 43002 rmxdioph 43004 expdiophlem2 43010 expdioph 43011 amgm3d 44188 lhe4.4ex1a 44324 257prm 47485 fmtno4prmfac193 47497 fmtno4nprmfac193 47498 3ndvds4 47519 139prmALT 47520 31prm 47521 127prm 47523 41prothprm 47543 341fppr2 47658 nfermltl2rev 47667 wtgoldbnnsum4prm 47726 bgoldbnnsum3prm 47728 bgoldbtbndlem1 47729 tgoldbach 47741 grtriclwlk3 47849 gpg5grlic 47974 |
Copyright terms: Public domain | W3C validator |