| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3nn | Structured version Visualization version GIF version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn | ⊢ 3 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12257 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2nn 12266 | . . 3 ⊢ 2 ∈ ℕ | |
| 3 | peano2nn 12205 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 3 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 1c1 11076 + caddc 11078 ℕcn 12193 2c2 12248 3c3 12249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-2 12256 df-3 12257 |
| This theorem is referenced by: 4nn 12276 3ne0 12299 3nn0 12467 3z 12573 ige3m2fz 13516 fvf1tp 13758 tpf1ofv0 14468 tpf1ofv1 14469 tpf1ofv2 14470 tpfo 14472 f1oun2prg 14890 01sqrexlem7 15221 bpoly4 16032 fsumcube 16033 sin01bnd 16160 egt2lt3 16181 rpnnen2lem2 16190 rpnnen2lem3 16191 rpnnen2lem4 16192 rpnnen2lem9 16197 rpnnen2lem11 16199 5ndvds3 16390 3lcm2e6woprm 16592 3lcm2e6 16709 prmo3 17019 5prm 17086 6nprm 17087 7prm 17088 9nprm 17090 11prm 17092 13prm 17093 17prm 17094 19prm 17095 23prm 17096 prmlem2 17097 37prm 17098 43prm 17099 83prm 17100 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem5 17112 2503lem1 17114 2503lem2 17115 2503lem3 17116 4001lem4 17121 4001prm 17122 mulrndx 17264 mulridx 17265 rngstr 17268 unifndx 17365 unifid 17366 unifndxnn 17367 slotsdifunifndx 17371 lt6abl 19832 cnfldstr 21273 cnfldstrOLD 21288 tangtx 26421 1cubrlem 26758 1cubr 26759 dcubic1lem 26760 dcubic2 26761 dcubic 26763 mcubic 26764 cubic2 26765 cubic 26766 quartlem3 26776 quart 26778 log2cnv 26861 log2tlbnd 26862 log2ublem1 26863 log2ublem2 26864 log2ub 26866 ppiublem1 27120 ppiub 27122 chtub 27130 bposlem3 27204 bposlem4 27205 bposlem5 27206 bposlem6 27207 bposlem9 27210 lgsdir2lem5 27247 dchrvmasumlem2 27416 dchrvmasumlema 27418 pntleml 27529 tgcgr4 28465 axlowdimlem16 28891 axlowdimlem17 28892 usgrexmpldifpr 29192 upgr3v3e3cycl 30116 ex-cnv 30373 ex-rn 30376 ex-mod 30385 2sqr3minply 33777 cos9thpiminplylem1 33779 cos9thpiminplylem2 33780 cos9thpiminplylem5 33783 fib4 34402 circlevma 34640 circlemethhgt 34641 hgt750lema 34655 sinccvglem 35666 cnndvlem1 36532 mblfinlem3 37660 itg2addnclem2 37673 itg2addnc 37675 lcm3un 42010 aks4d1p1 42071 3cubeslem2 42680 3cubeslem3r 42682 3cubes 42685 rmydioph 43010 rmxdioph 43012 expdiophlem2 43018 expdioph 43019 amgm3d 44195 lhe4.4ex1a 44325 modm2nep1 47371 modm1nep2 47373 257prm 47566 fmtno4prmfac193 47578 fmtno4nprmfac193 47579 3ndvds4 47600 139prmALT 47601 31prm 47602 127prm 47604 41prothprm 47624 341fppr2 47739 nfermltl2rev 47748 wtgoldbnnsum4prm 47807 bgoldbnnsum3prm 47809 bgoldbtbndlem1 47810 tgoldbach 47822 grtriclwlk3 47948 gpg3kgrtriexlem2 48079 gpg3kgrtriexlem5 48082 gpg3kgrtriexlem6 48083 gpg3kgrtriex 48084 |
| Copyright terms: Public domain | W3C validator |