Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3nn | Structured version Visualization version GIF version |
Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3nn | ⊢ 3 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12083 | . 2 ⊢ 3 = (2 + 1) | |
2 | 2nn 12092 | . . 3 ⊢ 2 ∈ ℕ | |
3 | peano2nn 12031 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2833 | 1 ⊢ 3 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 (class class class)co 7307 1c1 10918 + caddc 10920 ℕcn 12019 2c2 12074 3c3 12075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 ax-1cn 10975 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-nn 12020 df-2 12082 df-3 12083 |
This theorem is referenced by: 4nn 12102 3nn0 12297 3z 12399 ige3m2fz 13326 f1oun2prg 14675 sqrlem7 15005 bpoly4 15814 fsumcube 15815 sin01bnd 15939 egt2lt3 15960 rpnnen2lem2 15969 rpnnen2lem3 15970 rpnnen2lem4 15971 rpnnen2lem9 15976 rpnnen2lem11 15978 3lcm2e6woprm 16365 3lcm2e6 16481 prmo3 16787 5prm 16855 6nprm 16856 7prm 16857 9nprm 16859 11prm 16861 13prm 16862 17prm 16863 19prm 16864 23prm 16865 prmlem2 16866 37prm 16867 43prm 16868 83prm 16869 139prm 16870 163prm 16871 317prm 16872 631prm 16873 1259lem5 16881 2503lem1 16883 2503lem2 16884 2503lem3 16885 4001lem4 16890 4001prm 16891 mulrndx 17048 mulrid 17049 rngstr 17053 unifndx 17150 unifid 17151 unifndxnn 17152 slotsdifunifndx 17156 lt6abl 19541 sramulrOLD 20491 cnfldstr 20644 cnfldfunALTOLD 20656 zlmmulrOLD 20770 znmulOLD 20794 opsrmulrOLD 21302 tuslemOLD 23464 tngmulrOLD 23849 tangtx 25707 1cubrlem 26036 1cubr 26037 dcubic1lem 26038 dcubic2 26039 dcubic 26041 mcubic 26042 cubic2 26043 cubic 26044 quartlem3 26054 quart 26056 log2cnv 26139 log2tlbnd 26140 log2ublem1 26141 log2ublem2 26142 log2ub 26144 ppiublem1 26395 ppiub 26397 chtub 26405 bposlem3 26479 bposlem4 26480 bposlem5 26481 bposlem6 26482 bposlem9 26485 lgsdir2lem5 26522 dchrvmasumlem2 26691 dchrvmasumlema 26693 pntleml 26804 tgcgr4 26937 axlowdimlem16 27370 axlowdimlem17 27371 usgrexmpldifpr 27670 upgr3v3e3cycl 28589 ex-cnv 28846 ex-rn 28849 ex-mod 28858 resvmulrOLD 31584 fib4 32416 circlevma 32667 circlemethhgt 32668 hgt750lema 32682 sinccvglem 33675 cnndvlem1 34762 mblfinlem3 35860 itg2addnclem2 35873 itg2addnc 35875 hlhilsmulOLD 40001 lcm3un 40065 aks4d1p1 40126 3cubeslem2 40544 3cubeslem3r 40546 3cubes 40549 rmydioph 40874 rmxdioph 40876 expdiophlem2 40882 expdioph 40883 amgm3d 41848 lhe4.4ex1a 41985 257prm 45071 fmtno4prmfac193 45083 fmtno4nprmfac193 45084 3ndvds4 45105 139prmALT 45106 31prm 45107 127prm 45109 41prothprm 45129 341fppr2 45244 nfermltl2rev 45253 wtgoldbnnsum4prm 45312 bgoldbnnsum3prm 45314 bgoldbtbndlem1 45315 tgoldbach 45327 |
Copyright terms: Public domain | W3C validator |