| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3nn | Structured version Visualization version GIF version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn | ⊢ 3 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12210 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2nn 12219 | . . 3 ⊢ 2 ∈ ℕ | |
| 3 | peano2nn 12158 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 3 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7353 1c1 11029 + caddc 11031 ℕcn 12146 2c2 12201 3c3 12202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-2 12209 df-3 12210 |
| This theorem is referenced by: 4nn 12229 3ne0 12252 3nn0 12420 3z 12526 ige3m2fz 13469 fvf1tp 13711 tpf1ofv0 14421 tpf1ofv1 14422 tpf1ofv2 14423 tpfo 14425 f1oun2prg 14842 01sqrexlem7 15173 bpoly4 15984 fsumcube 15985 sin01bnd 16112 egt2lt3 16133 rpnnen2lem2 16142 rpnnen2lem3 16143 rpnnen2lem4 16144 rpnnen2lem9 16149 rpnnen2lem11 16151 5ndvds3 16342 3lcm2e6woprm 16544 3lcm2e6 16661 prmo3 16971 5prm 17038 6nprm 17039 7prm 17040 9nprm 17042 11prm 17044 13prm 17045 17prm 17046 19prm 17047 23prm 17048 prmlem2 17049 37prm 17050 43prm 17051 83prm 17052 139prm 17053 163prm 17054 317prm 17055 631prm 17056 1259lem5 17064 2503lem1 17066 2503lem2 17067 2503lem3 17068 4001lem4 17073 4001prm 17074 mulrndx 17216 mulridx 17217 rngstr 17220 unifndx 17317 unifid 17318 unifndxnn 17319 slotsdifunifndx 17323 lt6abl 19792 cnfldstr 21281 cnfldstrOLD 21296 tangtx 26430 1cubrlem 26767 1cubr 26768 dcubic1lem 26769 dcubic2 26770 dcubic 26772 mcubic 26773 cubic2 26774 cubic 26775 quartlem3 26785 quart 26787 log2cnv 26870 log2tlbnd 26871 log2ublem1 26872 log2ublem2 26873 log2ub 26875 ppiublem1 27129 ppiub 27131 chtub 27139 bposlem3 27213 bposlem4 27214 bposlem5 27215 bposlem6 27216 bposlem9 27219 lgsdir2lem5 27256 dchrvmasumlem2 27425 dchrvmasumlema 27427 pntleml 27538 tgcgr4 28494 axlowdimlem16 28920 axlowdimlem17 28921 usgrexmpldifpr 29221 upgr3v3e3cycl 30142 ex-cnv 30399 ex-rn 30402 ex-mod 30411 2sqr3minply 33749 cos9thpiminplylem1 33751 cos9thpiminplylem2 33752 cos9thpiminplylem5 33755 fib4 34374 circlevma 34612 circlemethhgt 34613 hgt750lema 34627 sinccvglem 35647 cnndvlem1 36513 mblfinlem3 37641 itg2addnclem2 37654 itg2addnc 37656 lcm3un 41991 aks4d1p1 42052 3cubeslem2 42661 3cubeslem3r 42663 3cubes 42666 rmydioph 42990 rmxdioph 42992 expdiophlem2 42998 expdioph 42999 amgm3d 44175 lhe4.4ex1a 44305 modm2nep1 47354 modm1nep2 47356 257prm 47549 fmtno4prmfac193 47561 fmtno4nprmfac193 47562 3ndvds4 47583 139prmALT 47584 31prm 47585 127prm 47587 41prothprm 47607 341fppr2 47722 nfermltl2rev 47731 wtgoldbnnsum4prm 47790 bgoldbnnsum3prm 47792 bgoldbtbndlem1 47793 tgoldbach 47805 grtriclwlk3 47933 gpg3kgrtriexlem2 48072 gpg3kgrtriexlem5 48075 gpg3kgrtriexlem6 48076 gpg3kgrtriex 48077 |
| Copyright terms: Public domain | W3C validator |