| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3nn | Structured version Visualization version GIF version | ||
| Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3nn | ⊢ 3 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 12200 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 2nn 12209 | . . 3 ⊢ 2 ∈ ℕ | |
| 3 | peano2nn 12148 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2829 | 1 ⊢ 3 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 (class class class)co 7355 1c1 11018 + caddc 11020 ℕcn 12136 2c2 12191 3c3 12192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 ax-1cn 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 df-2 12199 df-3 12200 |
| This theorem is referenced by: 4nn 12219 3ne0 12242 3nn0 12410 3z 12515 ige3m2fz 13455 fvf1tp 13700 tpf1ofv0 14410 tpf1ofv1 14411 tpf1ofv2 14412 tpfo 14414 f1oun2prg 14831 01sqrexlem7 15162 bpoly4 15973 fsumcube 15974 sin01bnd 16101 egt2lt3 16122 rpnnen2lem2 16131 rpnnen2lem3 16132 rpnnen2lem4 16133 rpnnen2lem9 16138 rpnnen2lem11 16140 5ndvds3 16331 3lcm2e6woprm 16533 3lcm2e6 16650 prmo3 16960 5prm 17027 6nprm 17028 7prm 17029 9nprm 17031 11prm 17033 13prm 17034 17prm 17035 19prm 17036 23prm 17037 prmlem2 17038 37prm 17039 43prm 17040 83prm 17041 139prm 17042 163prm 17043 317prm 17044 631prm 17045 1259lem5 17053 2503lem1 17055 2503lem2 17056 2503lem3 17057 4001lem4 17062 4001prm 17063 mulrndx 17205 mulridx 17206 rngstr 17209 unifndx 17306 unifid 17307 unifndxnn 17308 slotsdifunifndx 17312 lt6abl 19815 cnfldstr 21302 cnfldstrOLD 21317 tangtx 26461 1cubrlem 26798 1cubr 26799 dcubic1lem 26800 dcubic2 26801 dcubic 26803 mcubic 26804 cubic2 26805 cubic 26806 quartlem3 26816 quart 26818 log2cnv 26901 log2tlbnd 26902 log2ublem1 26903 log2ublem2 26904 log2ub 26906 ppiublem1 27160 ppiub 27162 chtub 27170 bposlem3 27244 bposlem4 27245 bposlem5 27246 bposlem6 27247 bposlem9 27250 lgsdir2lem5 27287 dchrvmasumlem2 27456 dchrvmasumlema 27458 pntleml 27569 tgcgr4 28529 axlowdimlem16 28956 axlowdimlem17 28957 usgrexmpldifpr 29257 upgr3v3e3cycl 30181 ex-cnv 30438 ex-rn 30441 ex-mod 30450 2sqr3minply 33865 cos9thpiminplylem1 33867 cos9thpiminplylem2 33868 cos9thpiminplylem5 33871 fib4 34489 circlevma 34727 circlemethhgt 34728 hgt750lema 34742 sinccvglem 35788 cnndvlem1 36653 mblfinlem3 37772 itg2addnclem2 37785 itg2addnc 37787 lcm3un 42181 aks4d1p1 42242 3cubeslem2 42842 3cubeslem3r 42844 3cubes 42847 rmydioph 43171 rmxdioph 43173 expdiophlem2 43179 expdioph 43180 amgm3d 44356 lhe4.4ex1a 44486 modm2nep1 47528 modm1nep2 47530 257prm 47723 fmtno4prmfac193 47735 fmtno4nprmfac193 47736 3ndvds4 47757 139prmALT 47758 31prm 47759 127prm 47761 41prothprm 47781 341fppr2 47896 nfermltl2rev 47905 wtgoldbnnsum4prm 47964 bgoldbnnsum3prm 47966 bgoldbtbndlem1 47967 tgoldbach 47979 grtriclwlk3 48107 gpg3kgrtriexlem2 48246 gpg3kgrtriexlem5 48249 gpg3kgrtriexlem6 48250 gpg3kgrtriex 48251 |
| Copyright terms: Public domain | W3C validator |