Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3nn | Structured version Visualization version GIF version |
Description: 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3nn | ⊢ 3 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 12020 | . 2 ⊢ 3 = (2 + 1) | |
2 | 2nn 12029 | . . 3 ⊢ 2 ∈ ℕ | |
3 | peano2nn 11968 | . . 3 ⊢ (2 ∈ ℕ → (2 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (2 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ 3 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 (class class class)co 7268 1c1 10856 + caddc 10858 ℕcn 11956 2c2 12011 3c3 12012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 ax-1cn 10913 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-nn 11957 df-2 12019 df-3 12020 |
This theorem is referenced by: 4nn 12039 3nn0 12234 3z 12336 ige3m2fz 13262 f1oun2prg 14611 sqrlem7 14941 bpoly4 15750 fsumcube 15751 sin01bnd 15875 egt2lt3 15896 rpnnen2lem2 15905 rpnnen2lem3 15906 rpnnen2lem4 15907 rpnnen2lem9 15912 rpnnen2lem11 15914 3lcm2e6woprm 16301 3lcm2e6 16417 prmo3 16723 5prm 16791 6nprm 16792 7prm 16793 9nprm 16795 11prm 16797 13prm 16798 17prm 16799 19prm 16800 23prm 16801 prmlem2 16802 37prm 16803 43prm 16804 83prm 16805 139prm 16806 163prm 16807 317prm 16808 631prm 16809 1259lem5 16817 2503lem1 16819 2503lem2 16820 2503lem3 16821 4001lem4 16826 4001prm 16827 mulrndx 16984 mulrid 16985 rngstr 16989 unifndx 17086 unifid 17087 unifndxnn 17088 slotsdifunifndx 17092 lt6abl 19477 sramulrOLD 20427 cnfldstr 20580 cnfldfunOLD 20591 zlmmulrOLD 20706 znmulOLD 20730 opsrmulrOLD 21238 tuslemOLD 23400 tngmulrOLD 23785 tangtx 25643 1cubrlem 25972 1cubr 25973 dcubic1lem 25974 dcubic2 25975 dcubic 25977 mcubic 25978 cubic2 25979 cubic 25980 quartlem3 25990 quart 25992 log2cnv 26075 log2tlbnd 26076 log2ublem1 26077 log2ublem2 26078 log2ub 26080 ppiublem1 26331 ppiub 26333 chtub 26341 bposlem3 26415 bposlem4 26416 bposlem5 26417 bposlem6 26418 bposlem9 26421 lgsdir2lem5 26458 dchrvmasumlem2 26627 dchrvmasumlema 26629 pntleml 26740 tgcgr4 26873 axlowdimlem16 27306 axlowdimlem17 27307 usgrexmpldifpr 27606 upgr3v3e3cycl 28523 ex-cnv 28780 ex-rn 28783 ex-mod 28792 resvmulrOLD 31518 fib4 32350 circlevma 32601 circlemethhgt 32602 hgt750lema 32616 sinccvglem 33609 cnndvlem1 34696 mblfinlem3 35795 itg2addnclem2 35808 itg2addnc 35810 hlhilsmulOLD 39938 lcm3un 40003 aks4d1p1 40064 3cubeslem2 40487 3cubeslem3r 40489 3cubes 40492 rmydioph 40816 rmxdioph 40818 expdiophlem2 40824 expdioph 40825 amgm3d 41763 lhe4.4ex1a 41900 257prm 44965 fmtno4prmfac193 44977 fmtno4nprmfac193 44978 3ndvds4 44999 139prmALT 45000 31prm 45001 127prm 45003 41prothprm 45023 341fppr2 45138 nfermltl2rev 45147 wtgoldbnnsum4prm 45206 bgoldbnnsum3prm 45208 bgoldbtbndlem1 45209 tgoldbach 45221 |
Copyright terms: Public domain | W3C validator |