Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppmptdmf Structured version   Visualization version   GIF version

Theorem fsuppmptdmf 46547
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 4-Sep-2019.)
Hypotheses
Ref Expression
fsuppmptdmf.n 𝑥𝜑
fsuppmptdmf.f 𝐹 = (𝑥𝐴𝑌)
fsuppmptdmf.a (𝜑𝐴 ∈ Fin)
fsuppmptdmf.y ((𝜑𝑥𝐴) → 𝑌𝑉)
fsuppmptdmf.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fsuppmptdmf (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem fsuppmptdmf
StepHypRef Expression
1 fsuppmptdmf.n . . 3 𝑥𝜑
2 fsuppmptdmf.y . . 3 ((𝜑𝑥𝐴) → 𝑌𝑉)
3 fsuppmptdmf.f . . 3 𝐹 = (𝑥𝐴𝑌)
41, 2, 3fmptdf 7069 . 2 (𝜑𝐹:𝐴𝑉)
5 fsuppmptdmf.a . 2 (𝜑𝐴 ∈ Fin)
6 fsuppmptdmf.z . 2 (𝜑𝑍𝑊)
74, 5, 6fdmfifsupp 9323 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wnf 1786  wcel 2107   class class class wbr 5109  cmpt 5192  Fincfn 8889   finSupp cfsupp 9311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-supp 8097  df-1o 8416  df-en 8890  df-fin 8893  df-fsupp 9312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator