Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppmptdmf Structured version   Visualization version   GIF version

Theorem fsuppmptdmf 48106
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 4-Sep-2019.)
Hypotheses
Ref Expression
fsuppmptdmf.n 𝑥𝜑
fsuppmptdmf.f 𝐹 = (𝑥𝐴𝑌)
fsuppmptdmf.a (𝜑𝐴 ∈ Fin)
fsuppmptdmf.y ((𝜑𝑥𝐴) → 𝑌𝑉)
fsuppmptdmf.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fsuppmptdmf (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem fsuppmptdmf
StepHypRef Expression
1 fsuppmptdmf.n . . 3 𝑥𝜑
2 fsuppmptdmf.y . . 3 ((𝜑𝑥𝐴) → 𝑌𝑉)
3 fsuppmptdmf.f . . 3 𝐹 = (𝑥𝐴𝑌)
41, 2, 3fmptdf 7151 . 2 (𝜑𝐹:𝐴𝑉)
5 fsuppmptdmf.a . 2 (𝜑𝐴 ∈ Fin)
6 fsuppmptdmf.z . 2 (𝜑𝑍𝑊)
74, 5, 6fdmfifsupp 9444 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108   class class class wbr 5166  cmpt 5249  Fincfn 9003   finSupp cfsupp 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-supp 8202  df-1o 8522  df-en 9004  df-fin 9007  df-fsupp 9432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator