Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppmptdmf Structured version   Visualization version   GIF version

Theorem fsuppmptdmf 48488
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 4-Sep-2019.)
Hypotheses
Ref Expression
fsuppmptdmf.n 𝑥𝜑
fsuppmptdmf.f 𝐹 = (𝑥𝐴𝑌)
fsuppmptdmf.a (𝜑𝐴 ∈ Fin)
fsuppmptdmf.y ((𝜑𝑥𝐴) → 𝑌𝑉)
fsuppmptdmf.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fsuppmptdmf (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem fsuppmptdmf
StepHypRef Expression
1 fsuppmptdmf.n . . 3 𝑥𝜑
2 fsuppmptdmf.y . . 3 ((𝜑𝑥𝐴) → 𝑌𝑉)
3 fsuppmptdmf.f . . 3 𝐹 = (𝑥𝐴𝑌)
41, 2, 3fmptdf 7050 . 2 (𝜑𝐹:𝐴𝑉)
5 fsuppmptdmf.a . 2 (𝜑𝐴 ∈ Fin)
6 fsuppmptdmf.z . 2 (𝜑𝑍𝑊)
74, 5, 6fdmfifsupp 9259 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111   class class class wbr 5089  cmpt 5170  Fincfn 8869   finSupp cfsupp 9245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-supp 8091  df-1o 8385  df-en 8870  df-fin 8873  df-fsupp 9246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator