Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satffunlem1 Structured version   Visualization version   GIF version

Theorem satffunlem1 32899
Description: Lemma 1 for satffun 32901: induction basis. (Contributed by AV, 28-Oct-2023.)
Assertion
Ref Expression
satffunlem1 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅))

Proof of Theorem satffunlem1
Dummy variables 𝑓 𝑖 𝑗 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satfv0fun 32863 . . 3 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
2 satffunlem1lem1 32894 . . . 4 (Fun ((𝑀 Sat 𝐸)‘∅) → Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})
31, 2syl 17 . . 3 ((𝑀𝑉𝐸𝑊) → Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})
4 satffunlem1lem2 32895 . . 3 ((𝑀𝑉𝐸𝑊) → (dom ((𝑀 Sat 𝐸)‘∅) ∩ dom {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) = ∅)
5 funun 6387 . . 3 (((Fun ((𝑀 Sat 𝐸)‘∅) ∧ Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) ∧ (dom ((𝑀 Sat 𝐸)‘∅) ∩ dom {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) = ∅) → Fun (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
61, 3, 4, 5syl21anc 836 . 2 ((𝑀𝑉𝐸𝑊) → Fun (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
7 peano1 7607 . . . 4 ∅ ∈ ω
8 eqid 2759 . . . . 5 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
98satfvsuc 32853 . . . 4 ((𝑀𝑉𝐸𝑊 ∧ ∅ ∈ ω) → ((𝑀 Sat 𝐸)‘suc ∅) = (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
107, 9mp3an3 1448 . . 3 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘suc ∅) = (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
1110funeqd 6363 . 2 ((𝑀𝑉𝐸𝑊) → (Fun ((𝑀 Sat 𝐸)‘suc ∅) ↔ Fun (((𝑀 Sat 𝐸)‘∅) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘∅)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘∅)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ ∀𝑗𝑀 ({⟨𝑖, 𝑗⟩} ∪ (𝑓 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})))
126, 11mpbird 260 1 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘suc ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1539  wcel 2112  wral 3071  wrex 3072  {crab 3075  cdif 3858  cun 3859  cin 3860  c0 4228  {csn 4526  cop 4532  {copab 5099  dom cdm 5529  cres 5531  suc csuc 6177  Fun wfun 6335  cfv 6341  (class class class)co 7157  ωcom 7586  1st c1st 7698  2nd c2nd 7699  m cmap 8423  𝑔cgna 32826  𝑔cgol 32827   Sat csat 32828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-inf2 9151
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-1o 8119  df-2o 8120  df-map 8425  df-goel 32832  df-gona 32833  df-goal 32834  df-sat 32835  df-fmla 32837
This theorem is referenced by:  satffun  32901
  Copyright terms: Public domain W3C validator