MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdir Structured version   Visualization version   GIF version

Theorem mulgdir 18650
Description: Sum of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgdir ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgdir
StepHypRef Expression
1 mulgnndir.b . . . 4 𝐵 = (Base‘𝐺)
2 mulgnndir.t . . . 4 · = (.g𝐺)
3 mulgnndir.p . . . 4 + = (+g𝐺)
41, 2, 3mulgdirlem 18649 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
543expa 1116 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
6 simpll 763 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝐺 ∈ Grp)
7 simpr2 1193 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℤ)
87adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℤ)
98znegcld 12357 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑁 ∈ ℤ)
10 simpr1 1192 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
1110adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℤ)
1211znegcld 12357 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℤ)
13 simplr3 1215 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑋𝐵)
1411zcnd 12356 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℂ)
1514negcld 11249 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℂ)
168zcnd 12356 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℂ)
1716negcld 11249 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑁 ∈ ℂ)
1814, 16negdid 11275 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑀 + -𝑁))
1915, 17, 18comraddd 11119 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑁 + -𝑀))
20 simpr 484 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) ∈ ℕ0)
2119, 20eqeltrrd 2840 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑁 + -𝑀) ∈ ℕ0)
221, 2, 3mulgdirlem 18649 . . . . . 6 ((𝐺 ∈ Grp ∧ (-𝑁 ∈ ℤ ∧ -𝑀 ∈ ℤ ∧ 𝑋𝐵) ∧ (-𝑁 + -𝑀) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)))
236, 9, 12, 13, 21, 22syl131anc 1381 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)))
2419oveq1d 7270 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) · 𝑋) = ((-𝑁 + -𝑀) · 𝑋))
2510, 7zaddcld 12359 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) ∈ ℤ)
2625adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
27 eqid 2738 . . . . . . . 8 (invg𝐺) = (invg𝐺)
281, 2, 27mulgneg 18637 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑀 + 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
296, 26, 13, 28syl3anc 1369 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
3024, 29eqtr3d 2780 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
311, 2, 27mulgneg 18637 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
326, 8, 13, 31syl3anc 1369 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
331, 2, 27mulgneg 18637 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
346, 11, 13, 33syl3anc 1369 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
3532, 34oveq12d 7273 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
361, 2mulgcl 18636 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
376, 11, 13, 36syl3anc 1369 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 · 𝑋) ∈ 𝐵)
381, 2mulgcl 18636 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
396, 8, 13, 38syl3anc 1369 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝐵)
401, 3, 27grpinvadd 18568 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
416, 37, 39, 40syl3anc 1369 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
4235, 41eqtr4d 2781 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))))
4323, 30, 423eqtr3d 2786 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))))
4443fveq2d 6760 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))))
451, 2mulgcl 18636 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
466, 26, 13, 45syl3anc 1369 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
471, 27grpinvinv 18557 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
486, 46, 47syl2anc 583 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
491, 3grpcl 18500 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵)
506, 37, 39, 49syl3anc 1369 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵)
511, 27grpinvinv 18557 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
526, 50, 51syl2anc 583 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
5344, 48, 523eqtr3d 2786 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
54 elznn0 12264 . . . 4 ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑀 + 𝑁) ∈ ℝ ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0)))
5554simprbi 496 . . 3 ((𝑀 + 𝑁) ∈ ℤ → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
5625, 55syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
575, 53, 56mpjaodan 955 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cr 10801   + caddc 10805  -cneg 11136  0cn0 12163  cz 12249  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  invgcminusg 18493  .gcmg 18615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mulg 18616
This theorem is referenced by:  mulgp1  18651  mulgneg2  18652  mulgmodid  18657  mulgsubdir  18658  cycsubgcl  18740  odbezout  19080  cygabl  19406  cygablOLD  19407  ablfacrp  19584  pgpfac1lem2  19593  pgpfac1lem3  19595  mulgghm2  20610  zlmlmod  20640  cygznlem3  20689  dchrptlem2  26318  archirngz  31345  archiabllem1a  31347  archiabllem1  31349  archiabllem2c  31351
  Copyright terms: Public domain W3C validator