MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdir Structured version   Visualization version   GIF version

Theorem mulgdir 18204
Description: Sum of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgdir ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgdir
StepHypRef Expression
1 mulgnndir.b . . . 4 𝐵 = (Base‘𝐺)
2 mulgnndir.t . . . 4 · = (.g𝐺)
3 mulgnndir.p . . . 4 + = (+g𝐺)
41, 2, 3mulgdirlem 18203 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
543expa 1112 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
6 simpll 763 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝐺 ∈ Grp)
7 simpr2 1189 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℤ)
87adantr 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℤ)
98znegcld 12083 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑁 ∈ ℤ)
10 simpr1 1188 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
1110adantr 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℤ)
1211znegcld 12083 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℤ)
13 simplr3 1211 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑋𝐵)
1411zcnd 12082 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℂ)
1514negcld 10978 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℂ)
168zcnd 12082 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℂ)
1716negcld 10978 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑁 ∈ ℂ)
1814, 16negdid 11004 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑀 + -𝑁))
1915, 17, 18comraddd 10848 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑁 + -𝑀))
20 simpr 485 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) ∈ ℕ0)
2119, 20eqeltrrd 2919 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑁 + -𝑀) ∈ ℕ0)
221, 2, 3mulgdirlem 18203 . . . . . 6 ((𝐺 ∈ Grp ∧ (-𝑁 ∈ ℤ ∧ -𝑀 ∈ ℤ ∧ 𝑋𝐵) ∧ (-𝑁 + -𝑀) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)))
236, 9, 12, 13, 21, 22syl131anc 1377 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)))
2419oveq1d 7165 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) · 𝑋) = ((-𝑁 + -𝑀) · 𝑋))
2510, 7zaddcld 12085 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) ∈ ℤ)
2625adantr 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
27 eqid 2826 . . . . . . . 8 (invg𝐺) = (invg𝐺)
281, 2, 27mulgneg 18191 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑀 + 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
296, 26, 13, 28syl3anc 1365 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
3024, 29eqtr3d 2863 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
311, 2, 27mulgneg 18191 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
326, 8, 13, 31syl3anc 1365 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
331, 2, 27mulgneg 18191 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
346, 11, 13, 33syl3anc 1365 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
3532, 34oveq12d 7168 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
361, 2mulgcl 18190 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
376, 11, 13, 36syl3anc 1365 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 · 𝑋) ∈ 𝐵)
381, 2mulgcl 18190 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
396, 8, 13, 38syl3anc 1365 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝐵)
401, 3, 27grpinvadd 18122 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
416, 37, 39, 40syl3anc 1365 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
4235, 41eqtr4d 2864 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))))
4323, 30, 423eqtr3d 2869 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))))
4443fveq2d 6673 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))))
451, 2mulgcl 18190 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
466, 26, 13, 45syl3anc 1365 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
471, 27grpinvinv 18111 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
486, 46, 47syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
491, 3grpcl 18056 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵)
506, 37, 39, 49syl3anc 1365 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵)
511, 27grpinvinv 18111 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
526, 50, 51syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
5344, 48, 523eqtr3d 2869 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
54 elznn0 11990 . . . 4 ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑀 + 𝑁) ∈ ℝ ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0)))
5554simprbi 497 . . 3 ((𝑀 + 𝑁) ∈ ℤ → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
5625, 55syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
575, 53, 56mpjaodan 954 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2107  cfv 6354  (class class class)co 7150  cr 10530   + caddc 10534  -cneg 10865  0cn0 11891  cz 11975  Basecbs 16478  +gcplusg 16560  Grpcgrp 18048  invgcminusg 18049  .gcmg 18169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12888  df-seq 13365  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18051  df-minusg 18052  df-mulg 18170
This theorem is referenced by:  mulgp1  18205  mulgneg2  18206  mulgmodid  18211  mulgsubdir  18212  cycsubgcl  18294  odbezout  18621  cygabl  18946  cygablOLD  18947  ablfacrp  19124  pgpfac1lem2  19133  pgpfac1lem3  19135  mulgghm2  20579  zlmlmod  20605  cygznlem3  20651  dchrptlem2  25774  archirngz  30751  archiabllem1a  30753  archiabllem1  30755  archiabllem2c  30757
  Copyright terms: Public domain W3C validator