MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdir Structured version   Visualization version   GIF version

Theorem mulgdir 18908
Description: Sum of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgdir ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgdir
StepHypRef Expression
1 mulgnndir.b . . . 4 𝐵 = (Base‘𝐺)
2 mulgnndir.t . . . 4 · = (.g𝐺)
3 mulgnndir.p . . . 4 + = (+g𝐺)
41, 2, 3mulgdirlem 18907 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
543expa 1118 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
6 simpll 765 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝐺 ∈ Grp)
7 simpr2 1195 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℤ)
87adantr 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℤ)
98znegcld 12609 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑁 ∈ ℤ)
10 simpr1 1194 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
1110adantr 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℤ)
1211znegcld 12609 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℤ)
13 simplr3 1217 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑋𝐵)
1411zcnd 12608 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℂ)
1514negcld 11499 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℂ)
168zcnd 12608 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℂ)
1716negcld 11499 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑁 ∈ ℂ)
1814, 16negdid 11525 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑀 + -𝑁))
1915, 17, 18comraddd 11369 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑁 + -𝑀))
20 simpr 485 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) ∈ ℕ0)
2119, 20eqeltrrd 2839 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑁 + -𝑀) ∈ ℕ0)
221, 2, 3mulgdirlem 18907 . . . . . 6 ((𝐺 ∈ Grp ∧ (-𝑁 ∈ ℤ ∧ -𝑀 ∈ ℤ ∧ 𝑋𝐵) ∧ (-𝑁 + -𝑀) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)))
236, 9, 12, 13, 21, 22syl131anc 1383 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)))
2419oveq1d 7372 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) · 𝑋) = ((-𝑁 + -𝑀) · 𝑋))
2510, 7zaddcld 12611 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) ∈ ℤ)
2625adantr 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
27 eqid 2736 . . . . . . . 8 (invg𝐺) = (invg𝐺)
281, 2, 27mulgneg 18894 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑀 + 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
296, 26, 13, 28syl3anc 1371 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
3024, 29eqtr3d 2778 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
311, 2, 27mulgneg 18894 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
326, 8, 13, 31syl3anc 1371 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
331, 2, 27mulgneg 18894 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
346, 11, 13, 33syl3anc 1371 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
3532, 34oveq12d 7375 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
361, 2mulgcl 18893 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
376, 11, 13, 36syl3anc 1371 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 · 𝑋) ∈ 𝐵)
381, 2mulgcl 18893 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
396, 8, 13, 38syl3anc 1371 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝐵)
401, 3, 27grpinvadd 18825 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
416, 37, 39, 40syl3anc 1371 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
4235, 41eqtr4d 2779 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))))
4323, 30, 423eqtr3d 2784 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))))
4443fveq2d 6846 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))))
451, 2mulgcl 18893 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
466, 26, 13, 45syl3anc 1371 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
471, 27grpinvinv 18814 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
486, 46, 47syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
491, 3grpcl 18756 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵)
506, 37, 39, 49syl3anc 1371 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵)
511, 27grpinvinv 18814 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
526, 50, 51syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
5344, 48, 523eqtr3d 2784 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
54 elznn0 12514 . . . 4 ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑀 + 𝑁) ∈ ℝ ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0)))
5554simprbi 497 . . 3 ((𝑀 + 𝑁) ∈ ℤ → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
5625, 55syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
575, 53, 56mpjaodan 957 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  cfv 6496  (class class class)co 7357  cr 11050   + caddc 11054  -cneg 11386  0cn0 12413  cz 12499  Basecbs 17083  +gcplusg 17133  Grpcgrp 18748  invgcminusg 18749  .gcmg 18872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-seq 13907  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-mulg 18873
This theorem is referenced by:  mulgp1  18909  mulgneg2  18910  mulgmodid  18915  mulgsubdir  18916  cycsubgcl  18999  odbezout  19340  cygabl  19668  ablfacrp  19845  pgpfac1lem2  19854  pgpfac1lem3  19856  mulgghm2  20897  zlmlmod  20927  cygznlem3  20976  dchrptlem2  26613  archirngz  32025  archiabllem1a  32027  archiabllem1  32029  archiabllem2c  32031
  Copyright terms: Public domain W3C validator