MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdir Structured version   Visualization version   GIF version

Theorem mulgdir 19003
Description: Sum of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgdir ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgdir
StepHypRef Expression
1 mulgnndir.b . . . 4 𝐵 = (Base‘𝐺)
2 mulgnndir.t . . . 4 · = (.g𝐺)
3 mulgnndir.p . . . 4 + = (+g𝐺)
41, 2, 3mulgdirlem 19002 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
543expa 1118 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
6 simpll 766 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝐺 ∈ Grp)
7 simpr2 1196 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℤ)
87adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℤ)
98znegcld 12600 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑁 ∈ ℤ)
10 simpr1 1195 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
1110adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℤ)
1211znegcld 12600 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℤ)
13 simplr3 1218 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑋𝐵)
1411zcnd 12599 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑀 ∈ ℂ)
1514negcld 11480 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑀 ∈ ℂ)
168zcnd 12599 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → 𝑁 ∈ ℂ)
1716negcld 11480 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -𝑁 ∈ ℂ)
1814, 16negdid 11506 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑀 + -𝑁))
1915, 17, 18comraddd 11348 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) = (-𝑁 + -𝑀))
20 simpr 484 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → -(𝑀 + 𝑁) ∈ ℕ0)
2119, 20eqeltrrd 2829 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑁 + -𝑀) ∈ ℕ0)
221, 2, 3mulgdirlem 19002 . . . . . 6 ((𝐺 ∈ Grp ∧ (-𝑁 ∈ ℤ ∧ -𝑀 ∈ ℤ ∧ 𝑋𝐵) ∧ (-𝑁 + -𝑀) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)))
236, 9, 12, 13, 21, 22syl131anc 1385 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)))
2419oveq1d 7368 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) · 𝑋) = ((-𝑁 + -𝑀) · 𝑋))
2510, 7zaddcld 12602 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 + 𝑁) ∈ ℤ)
2625adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℤ)
27 eqid 2729 . . . . . . . 8 (invg𝐺) = (invg𝐺)
281, 2, 27mulgneg 18989 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → (-(𝑀 + 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
296, 26, 13, 28syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-(𝑀 + 𝑁) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
3024, 29eqtr3d 2766 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 + -𝑀) · 𝑋) = ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)))
311, 2, 27mulgneg 18989 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
326, 8, 13, 31syl3anc 1373 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
331, 2, 27mulgneg 18989 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
346, 11, 13, 33syl3anc 1373 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (-𝑀 · 𝑋) = ((invg𝐺)‘(𝑀 · 𝑋)))
3532, 34oveq12d 7371 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
361, 2mulgcl 18988 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
376, 11, 13, 36syl3anc 1373 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑀 · 𝑋) ∈ 𝐵)
381, 2mulgcl 18988 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
396, 8, 13, 38syl3anc 1373 . . . . . . 7 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝐵)
401, 3, 27grpinvadd 18915 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
416, 37, 39, 40syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))) = (((invg𝐺)‘(𝑁 · 𝑋)) + ((invg𝐺)‘(𝑀 · 𝑋))))
4235, 41eqtr4d 2767 . . . . 5 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((-𝑁 · 𝑋) + (-𝑀 · 𝑋)) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))))
4323, 30, 423eqtr3d 2772 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((𝑀 + 𝑁) · 𝑋)) = ((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋))))
4443fveq2d 6830 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))))
451, 2mulgcl 18988 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 + 𝑁) ∈ ℤ ∧ 𝑋𝐵) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
466, 26, 13, 45syl3anc 1373 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵)
471, 27grpinvinv 18902 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 + 𝑁) · 𝑋) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
486, 46, 47syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 + 𝑁) · 𝑋))) = ((𝑀 + 𝑁) · 𝑋))
491, 3grpcl 18838 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵)
506, 37, 39, 49syl3anc 1373 . . . 4 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵)
511, 27grpinvinv 18902 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑀 · 𝑋) + (𝑁 · 𝑋)) ∈ 𝐵) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
526, 50, 51syl2anc 584 . . 3 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((invg𝐺)‘((invg𝐺)‘((𝑀 · 𝑋) + (𝑁 · 𝑋)))) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
5344, 48, 523eqtr3d 2772 . 2 (((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) ∧ -(𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
54 elznn0 12504 . . . 4 ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑀 + 𝑁) ∈ ℝ ∧ ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0)))
5554simprbi 496 . . 3 ((𝑀 + 𝑁) ∈ ℤ → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
5625, 55syl 17 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) ∈ ℕ0 ∨ -(𝑀 + 𝑁) ∈ ℕ0))
575, 53, 56mpjaodan 960 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  cr 11027   + caddc 11031  -cneg 11366  0cn0 12402  cz 12489  Basecbs 17138  +gcplusg 17179  Grpcgrp 18830  invgcminusg 18831  .gcmg 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-seq 13927  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-mulg 18965
This theorem is referenced by:  mulgp1  19004  mulgneg2  19005  mulgmodid  19010  mulgsubdir  19011  cycsubgcl  19103  odbezout  19455  cygabl  19788  ablfacrp  19965  pgpfac1lem2  19974  pgpfac1lem3  19976  mulgghm2  21401  zlmlmod  21447  cygznlem3  21494  dchrptlem2  27192  archirngz  33144  archiabllem1a  33146  archiabllem1  33148  archiabllem2c  33150  elrgspnlem1  33195  primrootscoprmpow  42075  primrootscoprbij  42078  primrootspoweq0  42082  aks6d1c6isolem1  42150  aks6d1c6isolem2  42151  aks6d1c6lem5  42153
  Copyright terms: Public domain W3C validator