Step | Hyp | Ref
| Expression |
1 | | simp1 1137 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β πΎ β HL) |
2 | | simp21 1207 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β π β π΄) |
3 | | simp22 1208 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β π β π΄) |
4 | | eqid 2737 |
. . . . . 6
β’
(leβπΎ) =
(leβπΎ) |
5 | | hlatexch4.j |
. . . . . 6
β’ β¨ =
(joinβπΎ) |
6 | | hlatexch4.a |
. . . . . 6
β’ π΄ = (AtomsβπΎ) |
7 | 4, 5, 6 | hlatlej2 37867 |
. . . . 5
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π(leβπΎ)(π β¨ π)) |
8 | 1, 2, 3, 7 | syl3anc 1372 |
. . . 4
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β π(leβπΎ)(π β¨ π)) |
9 | | simp23 1209 |
. . . . . 6
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β π
β π΄) |
10 | 4, 5, 6 | hlatlej2 37867 |
. . . . . 6
β’ ((πΎ β HL β§ π β π΄ β§ π
β π΄) β π
(leβπΎ)(π β¨ π
)) |
11 | 1, 2, 9, 10 | syl3anc 1372 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β π
(leβπΎ)(π β¨ π
)) |
12 | | simp3r 1203 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β (π β¨ π) = (π β¨ π
)) |
13 | 11, 12 | breqtrrd 5138 |
. . . 4
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β π
(leβπΎ)(π β¨ π)) |
14 | | hllat 37854 |
. . . . . 6
β’ (πΎ β HL β πΎ β Lat) |
15 | 14 | 3ad2ant1 1134 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β πΎ β Lat) |
16 | | eqid 2737 |
. . . . . . 7
β’
(BaseβπΎ) =
(BaseβπΎ) |
17 | 16, 6 | atbase 37780 |
. . . . . 6
β’ (π β π΄ β π β (BaseβπΎ)) |
18 | 3, 17 | syl 17 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β π β (BaseβπΎ)) |
19 | 16, 6 | atbase 37780 |
. . . . . 6
β’ (π
β π΄ β π
β (BaseβπΎ)) |
20 | 9, 19 | syl 17 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β π
β (BaseβπΎ)) |
21 | 16, 5, 6 | hlatjcl 37858 |
. . . . . 6
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β (BaseβπΎ)) |
22 | 1, 2, 3, 21 | syl3anc 1372 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β (π β¨ π) β (BaseβπΎ)) |
23 | 16, 4, 5 | latjle12 18346 |
. . . . 5
β’ ((πΎ β Lat β§ (π β (BaseβπΎ) β§ π
β (BaseβπΎ) β§ (π β¨ π) β (BaseβπΎ))) β ((π(leβπΎ)(π β¨ π) β§ π
(leβπΎ)(π β¨ π)) β (π β¨ π
)(leβπΎ)(π β¨ π))) |
24 | 15, 18, 20, 22, 23 | syl13anc 1373 |
. . . 4
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β ((π(leβπΎ)(π β¨ π) β§ π
(leβπΎ)(π β¨ π)) β (π β¨ π
)(leβπΎ)(π β¨ π))) |
25 | 8, 13, 24 | mpbi2and 711 |
. . 3
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β (π β¨ π
)(leβπΎ)(π β¨ π)) |
26 | | simp3l 1202 |
. . . 4
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β π β π
) |
27 | 4, 5, 6 | ps-1 37969 |
. . . 4
β’ ((πΎ β HL β§ (π β π΄ β§ π
β π΄ β§ π β π
) β§ (π β π΄ β§ π β π΄)) β ((π β¨ π
)(leβπΎ)(π β¨ π) β (π β¨ π
) = (π β¨ π))) |
28 | 1, 3, 9, 26, 2, 3,
27 | syl132anc 1389 |
. . 3
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β ((π β¨ π
)(leβπΎ)(π β¨ π) β (π β¨ π
) = (π β¨ π))) |
29 | 25, 28 | mpbid 231 |
. 2
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β (π β¨ π
) = (π β¨ π)) |
30 | 29 | eqcomd 2743 |
1
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄) β§ (π β π
β§ (π β¨ π) = (π β¨ π
))) β (π β¨ π) = (π β¨ π
)) |