Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatexch4 Structured version   Visualization version   GIF version

Theorem hlatexch4 39475
Description: Exchange 2 atoms. (Contributed by NM, 13-May-2013.)
Hypotheses
Ref Expression
hlatexch4.j = (join‘𝐾)
hlatexch4.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlatexch4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑃 𝑅) = (𝑄 𝑆))

Proof of Theorem hlatexch4
StepHypRef Expression
1 simp11 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝐾 ∈ HL)
2 simp2l 1200 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑅𝐴)
3 simp2r 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑆𝐴)
4 eqid 2729 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
5 hlatexch4.j . . . . . . . 8 = (join‘𝐾)
6 hlatexch4.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
74, 5, 6hlatlej2 39369 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → 𝑆(le‘𝐾)(𝑅 𝑆))
81, 2, 3, 7syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑆(le‘𝐾)(𝑅 𝑆))
9 simp33 1212 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑃 𝑄) = (𝑅 𝑆))
108, 9breqtrrd 5135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑆(le‘𝐾)(𝑃 𝑄))
11 simp12 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃𝐴)
12 simp13 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑄𝐴)
13 simp32 1211 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑄𝑆)
1413necomd 2980 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑆𝑄)
154, 5, 6hlatexch2 39390 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑃𝐴𝑄𝐴) ∧ 𝑆𝑄) → (𝑆(le‘𝐾)(𝑃 𝑄) → 𝑃(le‘𝐾)(𝑆 𝑄)))
161, 3, 11, 12, 14, 15syl131anc 1385 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑆(le‘𝐾)(𝑃 𝑄) → 𝑃(le‘𝐾)(𝑆 𝑄)))
1710, 16mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃(le‘𝐾)(𝑆 𝑄))
185, 6hlatjcom 39361 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑄𝐴) → (𝑆 𝑄) = (𝑄 𝑆))
191, 3, 12, 18syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑆 𝑄) = (𝑄 𝑆))
2017, 19breqtrd 5133 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃(le‘𝐾)(𝑄 𝑆))
214, 5, 6hlatlej2 39369 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄(le‘𝐾)(𝑃 𝑄))
221, 11, 12, 21syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑄(le‘𝐾)(𝑃 𝑄))
2322, 9breqtrd 5133 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑄(le‘𝐾)(𝑅 𝑆))
244, 5, 6hlatexch2 39390 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑄𝑆) → (𝑄(le‘𝐾)(𝑅 𝑆) → 𝑅(le‘𝐾)(𝑄 𝑆)))
251, 12, 2, 3, 13, 24syl131anc 1385 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑄(le‘𝐾)(𝑅 𝑆) → 𝑅(le‘𝐾)(𝑄 𝑆)))
2623, 25mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑅(le‘𝐾)(𝑄 𝑆))
271hllatd 39357 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝐾 ∈ Lat)
28 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2928, 6atbase 39282 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3011, 29syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃 ∈ (Base‘𝐾))
3128, 6atbase 39282 . . . . 5 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
322, 31syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑅 ∈ (Base‘𝐾))
3328, 5, 6hlatjcl 39360 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → (𝑄 𝑆) ∈ (Base‘𝐾))
341, 12, 3, 33syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑄 𝑆) ∈ (Base‘𝐾))
3528, 4, 5latjle12 18409 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑄 𝑆) ∈ (Base‘𝐾))) → ((𝑃(le‘𝐾)(𝑄 𝑆) ∧ 𝑅(le‘𝐾)(𝑄 𝑆)) ↔ (𝑃 𝑅)(le‘𝐾)(𝑄 𝑆)))
3627, 30, 32, 34, 35syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → ((𝑃(le‘𝐾)(𝑄 𝑆) ∧ 𝑅(le‘𝐾)(𝑄 𝑆)) ↔ (𝑃 𝑅)(le‘𝐾)(𝑄 𝑆)))
3720, 26, 36mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑃 𝑅)(le‘𝐾)(𝑄 𝑆))
38 simp31 1210 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃𝑅)
394, 5, 6ps-1 39471 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴𝑃𝑅) ∧ (𝑄𝐴𝑆𝐴)) → ((𝑃 𝑅)(le‘𝐾)(𝑄 𝑆) ↔ (𝑃 𝑅) = (𝑄 𝑆)))
401, 11, 2, 38, 12, 3, 39syl132anc 1390 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → ((𝑃 𝑅)(le‘𝐾)(𝑄 𝑆) ↔ (𝑃 𝑅) = (𝑄 𝑆)))
4137, 40mpbid 232 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑃 𝑅) = (𝑄 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  Latclat 18390  Atomscatm 39256  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  cdlemg18a  40672
  Copyright terms: Public domain W3C validator