Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatexch4 Structured version   Visualization version   GIF version

Theorem hlatexch4 38340
Description: Exchange 2 atoms. (Contributed by NM, 13-May-2013.)
Hypotheses
Ref Expression
hlatexch4.j ∨ = (joinβ€˜πΎ)
hlatexch4.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
hlatexch4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑆))

Proof of Theorem hlatexch4
StepHypRef Expression
1 simp11 1203 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝐾 ∈ HL)
2 simp2l 1199 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑅 ∈ 𝐴)
3 simp2r 1200 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑆 ∈ 𝐴)
4 eqid 2732 . . . . . . . 8 (leβ€˜πΎ) = (leβ€˜πΎ)
5 hlatexch4.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
6 hlatexch4.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
74, 5, 6hlatlej2 38234 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑆(leβ€˜πΎ)(𝑅 ∨ 𝑆))
81, 2, 3, 7syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑆(leβ€˜πΎ)(𝑅 ∨ 𝑆))
9 simp33 1211 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))
108, 9breqtrrd 5175 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑆(leβ€˜πΎ)(𝑃 ∨ 𝑄))
11 simp12 1204 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑃 ∈ 𝐴)
12 simp13 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑄 ∈ 𝐴)
13 simp32 1210 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑄 β‰  𝑆)
1413necomd 2996 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑆 β‰  𝑄)
154, 5, 6hlatexch2 38255 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑆 β‰  𝑄) β†’ (𝑆(leβ€˜πΎ)(𝑃 ∨ 𝑄) β†’ 𝑃(leβ€˜πΎ)(𝑆 ∨ 𝑄)))
161, 3, 11, 12, 14, 15syl131anc 1383 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑆(leβ€˜πΎ)(𝑃 ∨ 𝑄) β†’ 𝑃(leβ€˜πΎ)(𝑆 ∨ 𝑄)))
1710, 16mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑃(leβ€˜πΎ)(𝑆 ∨ 𝑄))
185, 6hlatjcom 38226 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑆 ∨ 𝑄) = (𝑄 ∨ 𝑆))
191, 3, 12, 18syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑆 ∨ 𝑄) = (𝑄 ∨ 𝑆))
2017, 19breqtrd 5173 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑃(leβ€˜πΎ)(𝑄 ∨ 𝑆))
214, 5, 6hlatlej2 38234 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ 𝑄(leβ€˜πΎ)(𝑃 ∨ 𝑄))
221, 11, 12, 21syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑄(leβ€˜πΎ)(𝑃 ∨ 𝑄))
2322, 9breqtrd 5173 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑄(leβ€˜πΎ)(𝑅 ∨ 𝑆))
244, 5, 6hlatexch2 38255 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑄 β‰  𝑆) β†’ (𝑄(leβ€˜πΎ)(𝑅 ∨ 𝑆) β†’ 𝑅(leβ€˜πΎ)(𝑄 ∨ 𝑆)))
251, 12, 2, 3, 13, 24syl131anc 1383 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑄(leβ€˜πΎ)(𝑅 ∨ 𝑆) β†’ 𝑅(leβ€˜πΎ)(𝑄 ∨ 𝑆)))
2623, 25mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑅(leβ€˜πΎ)(𝑄 ∨ 𝑆))
271hllatd 38222 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝐾 ∈ Lat)
28 eqid 2732 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2928, 6atbase 38147 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
3011, 29syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
3128, 6atbase 38147 . . . . 5 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
322, 31syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
3328, 5, 6hlatjcl 38225 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑄 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
341, 12, 3, 33syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑄 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
3528, 4, 5latjle12 18399 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑆) ∈ (Baseβ€˜πΎ))) β†’ ((𝑃(leβ€˜πΎ)(𝑄 ∨ 𝑆) ∧ 𝑅(leβ€˜πΎ)(𝑄 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑅)(leβ€˜πΎ)(𝑄 ∨ 𝑆)))
3627, 30, 32, 34, 35syl13anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ ((𝑃(leβ€˜πΎ)(𝑄 ∨ 𝑆) ∧ 𝑅(leβ€˜πΎ)(𝑄 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑅)(leβ€˜πΎ)(𝑄 ∨ 𝑆)))
3720, 26, 36mpbi2and 710 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑃 ∨ 𝑅)(leβ€˜πΎ)(𝑄 ∨ 𝑆))
38 simp31 1209 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑃 β‰  𝑅)
394, 5, 6ps-1 38336 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑅) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑅)(leβ€˜πΎ)(𝑄 ∨ 𝑆) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑆)))
401, 11, 2, 38, 12, 3, 39syl132anc 1388 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ ((𝑃 ∨ 𝑅)(leβ€˜πΎ)(𝑄 ∨ 𝑆) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑆)))
4137, 40mpbid 231 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑆))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  Latclat 18380  Atomscatm 38121  HLchlt 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209
This theorem is referenced by:  cdlemg18a  39537
  Copyright terms: Public domain W3C validator