Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatexch4 Structured version   Visualization version   GIF version

Theorem hlatexch4 37973
Description: Exchange 2 atoms. (Contributed by NM, 13-May-2013.)
Hypotheses
Ref Expression
hlatexch4.j ∨ = (joinβ€˜πΎ)
hlatexch4.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
hlatexch4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑆))

Proof of Theorem hlatexch4
StepHypRef Expression
1 simp11 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝐾 ∈ HL)
2 simp2l 1200 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑅 ∈ 𝐴)
3 simp2r 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑆 ∈ 𝐴)
4 eqid 2737 . . . . . . . 8 (leβ€˜πΎ) = (leβ€˜πΎ)
5 hlatexch4.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
6 hlatexch4.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
74, 5, 6hlatlej2 37867 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑆(leβ€˜πΎ)(𝑅 ∨ 𝑆))
81, 2, 3, 7syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑆(leβ€˜πΎ)(𝑅 ∨ 𝑆))
9 simp33 1212 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))
108, 9breqtrrd 5138 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑆(leβ€˜πΎ)(𝑃 ∨ 𝑄))
11 simp12 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑃 ∈ 𝐴)
12 simp13 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑄 ∈ 𝐴)
13 simp32 1211 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑄 β‰  𝑆)
1413necomd 3000 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑆 β‰  𝑄)
154, 5, 6hlatexch2 37888 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑆 β‰  𝑄) β†’ (𝑆(leβ€˜πΎ)(𝑃 ∨ 𝑄) β†’ 𝑃(leβ€˜πΎ)(𝑆 ∨ 𝑄)))
161, 3, 11, 12, 14, 15syl131anc 1384 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑆(leβ€˜πΎ)(𝑃 ∨ 𝑄) β†’ 𝑃(leβ€˜πΎ)(𝑆 ∨ 𝑄)))
1710, 16mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑃(leβ€˜πΎ)(𝑆 ∨ 𝑄))
185, 6hlatjcom 37859 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑆 ∨ 𝑄) = (𝑄 ∨ 𝑆))
191, 3, 12, 18syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑆 ∨ 𝑄) = (𝑄 ∨ 𝑆))
2017, 19breqtrd 5136 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑃(leβ€˜πΎ)(𝑄 ∨ 𝑆))
214, 5, 6hlatlej2 37867 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ 𝑄(leβ€˜πΎ)(𝑃 ∨ 𝑄))
221, 11, 12, 21syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑄(leβ€˜πΎ)(𝑃 ∨ 𝑄))
2322, 9breqtrd 5136 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑄(leβ€˜πΎ)(𝑅 ∨ 𝑆))
244, 5, 6hlatexch2 37888 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑄 β‰  𝑆) β†’ (𝑄(leβ€˜πΎ)(𝑅 ∨ 𝑆) β†’ 𝑅(leβ€˜πΎ)(𝑄 ∨ 𝑆)))
251, 12, 2, 3, 13, 24syl131anc 1384 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑄(leβ€˜πΎ)(𝑅 ∨ 𝑆) β†’ 𝑅(leβ€˜πΎ)(𝑄 ∨ 𝑆)))
2623, 25mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑅(leβ€˜πΎ)(𝑄 ∨ 𝑆))
271hllatd 37855 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝐾 ∈ Lat)
28 eqid 2737 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2928, 6atbase 37780 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
3011, 29syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
3128, 6atbase 37780 . . . . 5 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
322, 31syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
3328, 5, 6hlatjcl 37858 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑄 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
341, 12, 3, 33syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑄 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
3528, 4, 5latjle12 18346 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑆) ∈ (Baseβ€˜πΎ))) β†’ ((𝑃(leβ€˜πΎ)(𝑄 ∨ 𝑆) ∧ 𝑅(leβ€˜πΎ)(𝑄 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑅)(leβ€˜πΎ)(𝑄 ∨ 𝑆)))
3627, 30, 32, 34, 35syl13anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ ((𝑃(leβ€˜πΎ)(𝑄 ∨ 𝑆) ∧ 𝑅(leβ€˜πΎ)(𝑄 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑅)(leβ€˜πΎ)(𝑄 ∨ 𝑆)))
3720, 26, 36mpbi2and 711 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑃 ∨ 𝑅)(leβ€˜πΎ)(𝑄 ∨ 𝑆))
38 simp31 1210 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ 𝑃 β‰  𝑅)
394, 5, 6ps-1 37969 . . 3 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 β‰  𝑅) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑅)(leβ€˜πΎ)(𝑄 ∨ 𝑆) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑆)))
401, 11, 2, 38, 12, 3, 39syl132anc 1389 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ ((𝑃 ∨ 𝑅)(leβ€˜πΎ)(𝑄 ∨ 𝑆) ↔ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑆)))
4137, 40mpbid 231 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 β‰  𝑅 ∧ 𝑄 β‰  𝑆 ∧ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑆))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944   class class class wbr 5110  β€˜cfv 6501  (class class class)co 7362  Basecbs 17090  lecple 17147  joincjn 18207  Latclat 18327  Atomscatm 37754  HLchlt 37841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-proset 18191  df-poset 18209  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-lat 18328  df-covers 37757  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842
This theorem is referenced by:  cdlemg18a  39170
  Copyright terms: Public domain W3C validator