Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatexch4 Structured version   Visualization version   GIF version

Theorem hlatexch4 36722
Description: Exchange 2 atoms. (Contributed by NM, 13-May-2013.)
Hypotheses
Ref Expression
hlatexch4.j = (join‘𝐾)
hlatexch4.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlatexch4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑃 𝑅) = (𝑄 𝑆))

Proof of Theorem hlatexch4
StepHypRef Expression
1 simp11 1200 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝐾 ∈ HL)
2 simp2l 1196 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑅𝐴)
3 simp2r 1197 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑆𝐴)
4 eqid 2824 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
5 hlatexch4.j . . . . . . . 8 = (join‘𝐾)
6 hlatexch4.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
74, 5, 6hlatlej2 36617 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → 𝑆(le‘𝐾)(𝑅 𝑆))
81, 2, 3, 7syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑆(le‘𝐾)(𝑅 𝑆))
9 simp33 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑃 𝑄) = (𝑅 𝑆))
108, 9breqtrrd 5080 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑆(le‘𝐾)(𝑃 𝑄))
11 simp12 1201 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃𝐴)
12 simp13 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑄𝐴)
13 simp32 1207 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑄𝑆)
1413necomd 3069 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑆𝑄)
154, 5, 6hlatexch2 36637 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑃𝐴𝑄𝐴) ∧ 𝑆𝑄) → (𝑆(le‘𝐾)(𝑃 𝑄) → 𝑃(le‘𝐾)(𝑆 𝑄)))
161, 3, 11, 12, 14, 15syl131anc 1380 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑆(le‘𝐾)(𝑃 𝑄) → 𝑃(le‘𝐾)(𝑆 𝑄)))
1710, 16mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃(le‘𝐾)(𝑆 𝑄))
185, 6hlatjcom 36609 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑄𝐴) → (𝑆 𝑄) = (𝑄 𝑆))
191, 3, 12, 18syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑆 𝑄) = (𝑄 𝑆))
2017, 19breqtrd 5078 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃(le‘𝐾)(𝑄 𝑆))
214, 5, 6hlatlej2 36617 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄(le‘𝐾)(𝑃 𝑄))
221, 11, 12, 21syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑄(le‘𝐾)(𝑃 𝑄))
2322, 9breqtrd 5078 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑄(le‘𝐾)(𝑅 𝑆))
244, 5, 6hlatexch2 36637 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑄𝑆) → (𝑄(le‘𝐾)(𝑅 𝑆) → 𝑅(le‘𝐾)(𝑄 𝑆)))
251, 12, 2, 3, 13, 24syl131anc 1380 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑄(le‘𝐾)(𝑅 𝑆) → 𝑅(le‘𝐾)(𝑄 𝑆)))
2623, 25mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑅(le‘𝐾)(𝑄 𝑆))
271hllatd 36605 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝐾 ∈ Lat)
28 eqid 2824 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2928, 6atbase 36530 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3011, 29syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃 ∈ (Base‘𝐾))
3128, 6atbase 36530 . . . . 5 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
322, 31syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑅 ∈ (Base‘𝐾))
3328, 5, 6hlatjcl 36608 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → (𝑄 𝑆) ∈ (Base‘𝐾))
341, 12, 3, 33syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑄 𝑆) ∈ (Base‘𝐾))
3528, 4, 5latjle12 17672 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑄 𝑆) ∈ (Base‘𝐾))) → ((𝑃(le‘𝐾)(𝑄 𝑆) ∧ 𝑅(le‘𝐾)(𝑄 𝑆)) ↔ (𝑃 𝑅)(le‘𝐾)(𝑄 𝑆)))
3627, 30, 32, 34, 35syl13anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → ((𝑃(le‘𝐾)(𝑄 𝑆) ∧ 𝑅(le‘𝐾)(𝑄 𝑆)) ↔ (𝑃 𝑅)(le‘𝐾)(𝑄 𝑆)))
3720, 26, 36mpbi2and 711 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑃 𝑅)(le‘𝐾)(𝑄 𝑆))
38 simp31 1206 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃𝑅)
394, 5, 6ps-1 36718 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴𝑃𝑅) ∧ (𝑄𝐴𝑆𝐴)) → ((𝑃 𝑅)(le‘𝐾)(𝑄 𝑆) ↔ (𝑃 𝑅) = (𝑄 𝑆)))
401, 11, 2, 38, 12, 3, 39syl132anc 1385 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → ((𝑃 𝑅)(le‘𝐾)(𝑄 𝑆) ↔ (𝑃 𝑅) = (𝑄 𝑆)))
4137, 40mpbid 235 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑃 𝑅) = (𝑄 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014   class class class wbr 5052  cfv 6343  (class class class)co 7149  Basecbs 16483  lecple 16572  joincjn 17554  Latclat 17655  Atomscatm 36504  HLchlt 36591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-lat 17656  df-covers 36507  df-ats 36508  df-atl 36539  df-cvlat 36563  df-hlat 36592
This theorem is referenced by:  cdlemg18a  37919
  Copyright terms: Public domain W3C validator