Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatexch4 Structured version   Visualization version   GIF version

Theorem hlatexch4 39601
Description: Exchange 2 atoms. (Contributed by NM, 13-May-2013.)
Hypotheses
Ref Expression
hlatexch4.j = (join‘𝐾)
hlatexch4.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlatexch4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑃 𝑅) = (𝑄 𝑆))

Proof of Theorem hlatexch4
StepHypRef Expression
1 simp11 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝐾 ∈ HL)
2 simp2l 1200 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑅𝐴)
3 simp2r 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑆𝐴)
4 eqid 2733 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
5 hlatexch4.j . . . . . . . 8 = (join‘𝐾)
6 hlatexch4.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
74, 5, 6hlatlej2 39496 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → 𝑆(le‘𝐾)(𝑅 𝑆))
81, 2, 3, 7syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑆(le‘𝐾)(𝑅 𝑆))
9 simp33 1212 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑃 𝑄) = (𝑅 𝑆))
108, 9breqtrrd 5121 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑆(le‘𝐾)(𝑃 𝑄))
11 simp12 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃𝐴)
12 simp13 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑄𝐴)
13 simp32 1211 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑄𝑆)
1413necomd 2984 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑆𝑄)
154, 5, 6hlatexch2 39516 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑃𝐴𝑄𝐴) ∧ 𝑆𝑄) → (𝑆(le‘𝐾)(𝑃 𝑄) → 𝑃(le‘𝐾)(𝑆 𝑄)))
161, 3, 11, 12, 14, 15syl131anc 1385 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑆(le‘𝐾)(𝑃 𝑄) → 𝑃(le‘𝐾)(𝑆 𝑄)))
1710, 16mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃(le‘𝐾)(𝑆 𝑄))
185, 6hlatjcom 39488 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑄𝐴) → (𝑆 𝑄) = (𝑄 𝑆))
191, 3, 12, 18syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑆 𝑄) = (𝑄 𝑆))
2017, 19breqtrd 5119 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃(le‘𝐾)(𝑄 𝑆))
214, 5, 6hlatlej2 39496 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄(le‘𝐾)(𝑃 𝑄))
221, 11, 12, 21syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑄(le‘𝐾)(𝑃 𝑄))
2322, 9breqtrd 5119 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑄(le‘𝐾)(𝑅 𝑆))
244, 5, 6hlatexch2 39516 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ 𝑄𝑆) → (𝑄(le‘𝐾)(𝑅 𝑆) → 𝑅(le‘𝐾)(𝑄 𝑆)))
251, 12, 2, 3, 13, 24syl131anc 1385 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑄(le‘𝐾)(𝑅 𝑆) → 𝑅(le‘𝐾)(𝑄 𝑆)))
2623, 25mpd 15 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑅(le‘𝐾)(𝑄 𝑆))
271hllatd 39484 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝐾 ∈ Lat)
28 eqid 2733 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2928, 6atbase 39409 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3011, 29syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃 ∈ (Base‘𝐾))
3128, 6atbase 39409 . . . . 5 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
322, 31syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑅 ∈ (Base‘𝐾))
3328, 5, 6hlatjcl 39487 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴) → (𝑄 𝑆) ∈ (Base‘𝐾))
341, 12, 3, 33syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑄 𝑆) ∈ (Base‘𝐾))
3528, 4, 5latjle12 18358 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑄 𝑆) ∈ (Base‘𝐾))) → ((𝑃(le‘𝐾)(𝑄 𝑆) ∧ 𝑅(le‘𝐾)(𝑄 𝑆)) ↔ (𝑃 𝑅)(le‘𝐾)(𝑄 𝑆)))
3627, 30, 32, 34, 35syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → ((𝑃(le‘𝐾)(𝑄 𝑆) ∧ 𝑅(le‘𝐾)(𝑄 𝑆)) ↔ (𝑃 𝑅)(le‘𝐾)(𝑄 𝑆)))
3720, 26, 36mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑃 𝑅)(le‘𝐾)(𝑄 𝑆))
38 simp31 1210 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → 𝑃𝑅)
394, 5, 6ps-1 39597 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑅𝐴𝑃𝑅) ∧ (𝑄𝐴𝑆𝐴)) → ((𝑃 𝑅)(le‘𝐾)(𝑄 𝑆) ↔ (𝑃 𝑅) = (𝑄 𝑆)))
401, 11, 2, 38, 12, 3, 39syl132anc 1390 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → ((𝑃 𝑅)(le‘𝐾)(𝑄 𝑆) ↔ (𝑃 𝑅) = (𝑄 𝑆)))
4137, 40mpbid 232 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑅𝑄𝑆 ∧ (𝑃 𝑄) = (𝑅 𝑆))) → (𝑃 𝑅) = (𝑄 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  joincjn 18219  Latclat 18339  Atomscatm 39383  HLchlt 39470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-lat 18340  df-covers 39386  df-ats 39387  df-atl 39418  df-cvlat 39442  df-hlat 39471
This theorem is referenced by:  cdlemg18a  40798
  Copyright terms: Public domain W3C validator