Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilvsca Structured version   Visualization version   GIF version

Theorem hlhilvsca 41933
Description: The scalar product for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilvsca.h 𝐻 = (LHyp‘𝐾)
hlhilvsca.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilvsca.t · = ( ·𝑠𝐿)
hlhilvsca.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilvsca.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hlhilvsca (𝜑· = ( ·𝑠𝑈))

Proof of Theorem hlhilvsca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhilvsca.t . . . 4 · = ( ·𝑠𝐿)
21fvexi 6879 . . 3 · ∈ V
3 eqid 2730 . . . 4 ({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})
43phlvsca 17319 . . 3 ( · ∈ V → · = ( ·𝑠 ‘({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
52, 4ax-mp 5 . 2 · = ( ·𝑠 ‘({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
6 hlhilvsca.h . . . 4 𝐻 = (LHyp‘𝐾)
7 hlhilvsca.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
8 hlhilvsca.l . . . 4 𝐿 = ((DVecH‘𝐾)‘𝑊)
9 eqid 2730 . . . 4 (Base‘𝐿) = (Base‘𝐿)
10 eqid 2730 . . . 4 (+g𝐿) = (+g𝐿)
11 eqid 2730 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
12 eqid 2730 . . . 4 ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊)
13 eqid 2730 . . . 4 (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩) = (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)
14 eqid 2730 . . . 4 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
15 eqid 2730 . . . 4 (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))
16 hlhilvsca.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
176, 7, 8, 9, 10, 11, 12, 13, 1, 14, 15, 16hlhilset 41920 . . 3 (𝜑𝑈 = ({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
1817fveq2d 6869 . 2 (𝜑 → ( ·𝑠𝑈) = ( ·𝑠 ‘({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
195, 18eqtr4id 2784 1 (𝜑· = ( ·𝑠𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3455  cun 3920  {cpr 4599  {ctp 4601  cop 4603  cfv 6519  (class class class)co 7394  cmpo 7396   sSet csts 17139  ndxcnx 17169  Basecbs 17185  +gcplusg 17226  *𝑟cstv 17228  Scalarcsca 17229   ·𝑠 cvsca 17230  ·𝑖cip 17231  HLchlt 39335  LHypclh 39970  EDRingcedring 40739  DVecHcdvh 41064  HDMapchdma 41778  HGMapchg 41869  HLHilchlh 41918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-n0 12459  df-z 12546  df-uz 12810  df-fz 13482  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-plusg 17239  df-sca 17242  df-vsca 17243  df-ip 17244  df-hlhil 41919
This theorem is referenced by:  hlhillvec  41937  hlhilphllem  41945
  Copyright terms: Public domain W3C validator