| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilvsca | Structured version Visualization version GIF version | ||
| Description: The scalar product for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhilvsca.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhilvsca.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
| hlhilvsca.t | ⊢ · = ( ·𝑠 ‘𝐿) |
| hlhilvsca.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhilvsca.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| hlhilvsca | ⊢ (𝜑 → · = ( ·𝑠 ‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhilvsca.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐿) | |
| 2 | 1 | fvexi 6831 | . . 3 ⊢ · ∈ V |
| 3 | eqid 2730 | . . . 4 ⊢ ({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) | |
| 4 | 3 | phlvsca 17246 | . . 3 ⊢ ( · ∈ V → · = ( ·𝑠 ‘({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
| 5 | 2, 4 | ax-mp 5 | . 2 ⊢ · = ( ·𝑠 ‘({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
| 6 | hlhilvsca.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | hlhilvsca.u | . . . 4 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 8 | hlhilvsca.l | . . . 4 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
| 9 | eqid 2730 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 10 | eqid 2730 | . . . 4 ⊢ (+g‘𝐿) = (+g‘𝐿) | |
| 11 | eqid 2730 | . . . 4 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
| 12 | eqid 2730 | . . . 4 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
| 13 | eqid 2730 | . . . 4 ⊢ (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) | |
| 14 | eqid 2730 | . . . 4 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
| 15 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) | |
| 16 | hlhilvsca.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 17 | 6, 7, 8, 9, 10, 11, 12, 13, 1, 14, 15, 16 | hlhilset 41952 | . . 3 ⊢ (𝜑 → 𝑈 = ({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
| 18 | 17 | fveq2d 6821 | . 2 ⊢ (𝜑 → ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
| 19 | 5, 18 | eqtr4id 2784 | 1 ⊢ (𝜑 → · = ( ·𝑠 ‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∪ cun 3898 {cpr 4576 {ctp 4578 〈cop 4580 ‘cfv 6477 (class class class)co 7341 ∈ cmpo 7343 sSet csts 17066 ndxcnx 17096 Basecbs 17112 +gcplusg 17153 *𝑟cstv 17155 Scalarcsca 17156 ·𝑠 cvsca 17157 ·𝑖cip 17158 HLchlt 39368 LHypclh 40002 EDRingcedring 40771 DVecHcdvh 41096 HDMapchdma 41810 HGMapchg 41901 HLHilchlh 41950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-struct 17050 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-sca 17169 df-vsca 17170 df-ip 17171 df-hlhil 41951 |
| This theorem is referenced by: hlhillvec 41969 hlhilphllem 41977 |
| Copyright terms: Public domain | W3C validator |