![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilvsca | Structured version Visualization version GIF version |
Description: The scalar product for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
Ref | Expression |
---|---|
hlhilvsca.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilvsca.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
hlhilvsca.t | ⊢ · = ( ·𝑠 ‘𝐿) |
hlhilvsca.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilvsca.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hlhilvsca | ⊢ (𝜑 → · = ( ·𝑠 ‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilvsca.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐿) | |
2 | 1 | fvexi 6911 | . . 3 ⊢ · ∈ V |
3 | eqid 2728 | . . . 4 ⊢ ({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) | |
4 | 3 | phlvsca 17331 | . . 3 ⊢ ( · ∈ V → · = ( ·𝑠 ‘({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
5 | 2, 4 | ax-mp 5 | . 2 ⊢ · = ( ·𝑠 ‘({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
6 | hlhilvsca.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | hlhilvsca.u | . . . 4 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
8 | hlhilvsca.l | . . . 4 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
9 | eqid 2728 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
10 | eqid 2728 | . . . 4 ⊢ (+g‘𝐿) = (+g‘𝐿) | |
11 | eqid 2728 | . . . 4 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
12 | eqid 2728 | . . . 4 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
13 | eqid 2728 | . . . 4 ⊢ (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) | |
14 | eqid 2728 | . . . 4 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
15 | eqid 2728 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) | |
16 | hlhilvsca.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | 6, 7, 8, 9, 10, 11, 12, 13, 1, 14, 15, 16 | hlhilset 41407 | . . 3 ⊢ (𝜑 → 𝑈 = ({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
18 | 17 | fveq2d 6901 | . 2 ⊢ (𝜑 → ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
19 | 5, 18 | eqtr4id 2787 | 1 ⊢ (𝜑 → · = ( ·𝑠 ‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∪ cun 3945 {cpr 4631 {ctp 4633 〈cop 4635 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 sSet csts 17132 ndxcnx 17162 Basecbs 17180 +gcplusg 17233 *𝑟cstv 17235 Scalarcsca 17236 ·𝑠 cvsca 17237 ·𝑖cip 17238 HLchlt 38822 LHypclh 39457 EDRingcedring 40226 DVecHcdvh 40551 HDMapchdma 41265 HGMapchg 41356 HLHilchlh 41405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 df-struct 17116 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-sca 17249 df-vsca 17250 df-ip 17251 df-hlhil 41406 |
This theorem is referenced by: hlhillvec 41428 hlhilphllem 41436 |
Copyright terms: Public domain | W3C validator |