Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilbase Structured version   Visualization version   GIF version

Theorem hlhilbase 41955
Description: The base set of the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilbase.h 𝐻 = (LHyp‘𝐾)
hlhilbase.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilbase.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilbase.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilbase.m 𝑀 = (Base‘𝐿)
Assertion
Ref Expression
hlhilbase (𝜑𝑀 = (Base‘𝑈))

Proof of Theorem hlhilbase
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhilbase.m . . . 4 𝑀 = (Base‘𝐿)
21fvexi 6890 . . 3 𝑀 ∈ V
3 eqid 2735 . . . 4 ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})
43phlbase 17361 . . 3 (𝑀 ∈ V → 𝑀 = (Base‘({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
52, 4ax-mp 5 . 2 𝑀 = (Base‘({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
6 hlhilbase.h . . . 4 𝐻 = (LHyp‘𝐾)
7 hlhilbase.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
8 hlhilbase.l . . . 4 𝐿 = ((DVecH‘𝐾)‘𝑊)
9 eqid 2735 . . . 4 (+g𝐿) = (+g𝐿)
10 eqid 2735 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
11 eqid 2735 . . . 4 ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊)
12 eqid 2735 . . . 4 (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩) = (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)
13 eqid 2735 . . . 4 ( ·𝑠𝐿) = ( ·𝑠𝐿)
14 eqid 2735 . . . 4 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
15 eqid 2735 . . . 4 (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))
16 hlhilbase.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
176, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15, 16hlhilset 41953 . . 3 (𝜑𝑈 = ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
1817fveq2d 6880 . 2 (𝜑 → (Base‘𝑈) = (Base‘({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
195, 18eqtr4id 2789 1 (𝜑𝑀 = (Base‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  {cpr 4603  {ctp 4605  cop 4607  cfv 6531  (class class class)co 7405  cmpo 7407   sSet csts 17182  ndxcnx 17212  Basecbs 17228  +gcplusg 17271  *𝑟cstv 17273  Scalarcsca 17274   ·𝑠 cvsca 17275  ·𝑖cip 17276  HLchlt 39368  LHypclh 40003  EDRingcedring 40772  DVecHcdvh 41097  HDMapchdma 41811  HGMapchg 41902  HLHilchlh 41951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-sca 17287  df-vsca 17288  df-ip 17289  df-hlhil 41952
This theorem is referenced by:  hlhillvec  41970  hlhil0  41974  hlhillsm  41975  hlhilocv  41976  hlhillcs  41977  hlhilphllem  41978  hlhilhillem  41979
  Copyright terms: Public domain W3C validator