Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilbase Structured version   Visualization version   GIF version

Theorem hlhilbase 39191
Description: The base set of the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilbase.h 𝐻 = (LHyp‘𝐾)
hlhilbase.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilbase.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilbase.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilbase.m 𝑀 = (Base‘𝐿)
Assertion
Ref Expression
hlhilbase (𝜑𝑀 = (Base‘𝑈))

Proof of Theorem hlhilbase
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhilbase.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hlhilbase.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
3 hlhilbase.l . . . 4 𝐿 = ((DVecH‘𝐾)‘𝑊)
4 hlhilbase.m . . . 4 𝑀 = (Base‘𝐿)
5 eqid 2822 . . . 4 (+g𝐿) = (+g𝐿)
6 eqid 2822 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
7 eqid 2822 . . . 4 ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊)
8 eqid 2822 . . . 4 (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩) = (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)
9 eqid 2822 . . . 4 ( ·𝑠𝐿) = ( ·𝑠𝐿)
10 eqid 2822 . . . 4 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
11 eqid 2822 . . . 4 (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))
12 hlhilbase.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12hlhilset 39189 . . 3 (𝜑𝑈 = ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
1413fveq2d 6656 . 2 (𝜑 → (Base‘𝑈) = (Base‘({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
154fvexi 6666 . . 3 𝑀 ∈ V
16 eqid 2822 . . . 4 ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})
1716phlbase 16645 . . 3 (𝑀 ∈ V → 𝑀 = (Base‘({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
1815, 17ax-mp 5 . 2 𝑀 = (Base‘({⟨(Base‘ndx), 𝑀⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥𝑀, 𝑦𝑀 ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
1914, 18syl6reqr 2876 1 (𝜑𝑀 = (Base‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  Vcvv 3469  cun 3906  {cpr 4541  {ctp 4543  cop 4545  cfv 6334  (class class class)co 7140  cmpo 7142  ndxcnx 16471   sSet csts 16472  Basecbs 16474  +gcplusg 16556  *𝑟cstv 16558  Scalarcsca 16559   ·𝑠 cvsca 16560  ·𝑖cip 16561  HLchlt 36605  LHypclh 37239  EDRingcedring 38008  DVecHcdvh 38333  HDMapchdma 39047  HGMapchg 39138  HLHilchlh 39187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-plusg 16569  df-sca 16572  df-vsca 16573  df-ip 16574  df-hlhil 39188
This theorem is referenced by:  hlhillvec  39206  hlhil0  39210  hlhillsm  39211  hlhilocv  39212  hlhillcs  39213  hlhilphllem  39214  hlhilhillem  39215
  Copyright terms: Public domain W3C validator