Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilsca Structured version   Visualization version   GIF version

Theorem hlhilsca 41894
Description: The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilbase.h 𝐻 = (LHyp‘𝐾)
hlhilbase.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilbase.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilsca.e 𝐸 = ((EDRing‘𝐾)‘𝑊)
hlhilsca.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hlhilsca.r 𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)
Assertion
Ref Expression
hlhilsca (𝜑𝑅 = (Scalar‘𝑈))

Proof of Theorem hlhilsca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhilsca.r . . . 4 𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)
2 ovex 7483 . . . 4 (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩) ∈ V
31, 2eqeltri 2840 . . 3 𝑅 ∈ V
4 eqid 2740 . . . 4 ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})
54phlsca 17410 . . 3 (𝑅 ∈ V → 𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
63, 5ax-mp 5 . 2 𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
7 hlhilbase.h . . . 4 𝐻 = (LHyp‘𝐾)
8 hlhilbase.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
9 eqid 2740 . . . 4 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
10 eqid 2740 . . . 4 (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))
11 eqid 2740 . . . 4 (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊))
12 hlhilsca.e . . . 4 𝐸 = ((EDRing‘𝐾)‘𝑊)
13 hlhilsca.g . . . 4 𝐺 = ((HGMap‘𝐾)‘𝑊)
14 eqid 2740 . . . 4 ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))
15 eqid 2740 . . . 4 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
16 eqid 2740 . . . 4 (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))
17 hlhilbase.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
187, 8, 9, 10, 11, 12, 13, 1, 14, 15, 16, 17hlhilset 41893 . . 3 (𝜑𝑈 = ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
1918fveq2d 6926 . 2 (𝜑 → (Scalar‘𝑈) = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
206, 19eqtr4id 2799 1 (𝜑𝑅 = (Scalar‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  {cpr 4650  {ctp 4652  cop 4654  cfv 6575  (class class class)co 7450  cmpo 7452   sSet csts 17212  ndxcnx 17242  Basecbs 17260  +gcplusg 17313  *𝑟cstv 17315  Scalarcsca 17316   ·𝑠 cvsca 17317  ·𝑖cip 17318  HLchlt 39308  LHypclh 39943  EDRingcedring 40712  DVecHcdvh 41037  HDMapchdma 41751  HGMapchg 41842  HLHilchlh 41891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-n0 12556  df-z 12642  df-uz 12906  df-fz 13570  df-struct 17196  df-slot 17231  df-ndx 17243  df-base 17261  df-plusg 17326  df-sca 17329  df-vsca 17330  df-ip 17331  df-hlhil 41892
This theorem is referenced by:  hlhilslem  41897  hlhilslemOLD  41898  hlhilnvl  41913
  Copyright terms: Public domain W3C validator