Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilsca Structured version   Visualization version   GIF version

Theorem hlhilsca 41871
Description: The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilbase.h 𝐻 = (LHyp‘𝐾)
hlhilbase.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilbase.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilsca.e 𝐸 = ((EDRing‘𝐾)‘𝑊)
hlhilsca.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hlhilsca.r 𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)
Assertion
Ref Expression
hlhilsca (𝜑𝑅 = (Scalar‘𝑈))

Proof of Theorem hlhilsca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhilsca.r . . . 4 𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)
2 ovex 7445 . . . 4 (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩) ∈ V
31, 2eqeltri 2829 . . 3 𝑅 ∈ V
4 eqid 2734 . . . 4 ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})
54phlsca 17364 . . 3 (𝑅 ∈ V → 𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
63, 5ax-mp 5 . 2 𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
7 hlhilbase.h . . . 4 𝐻 = (LHyp‘𝐾)
8 hlhilbase.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
9 eqid 2734 . . . 4 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
10 eqid 2734 . . . 4 (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))
11 eqid 2734 . . . 4 (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊))
12 hlhilsca.e . . . 4 𝐸 = ((EDRing‘𝐾)‘𝑊)
13 hlhilsca.g . . . 4 𝐺 = ((HGMap‘𝐾)‘𝑊)
14 eqid 2734 . . . 4 ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))
15 eqid 2734 . . . 4 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
16 eqid 2734 . . . 4 (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))
17 hlhilbase.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
187, 8, 9, 10, 11, 12, 13, 1, 14, 15, 16, 17hlhilset 41870 . . 3 (𝜑𝑈 = ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
1918fveq2d 6889 . 2 (𝜑 → (Scalar‘𝑈) = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
206, 19eqtr4id 2788 1 (𝜑𝑅 = (Scalar‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  cun 3929  {cpr 4608  {ctp 4610  cop 4612  cfv 6540  (class class class)co 7412  cmpo 7414   sSet csts 17181  ndxcnx 17211  Basecbs 17228  +gcplusg 17272  *𝑟cstv 17274  Scalarcsca 17275   ·𝑠 cvsca 17276  ·𝑖cip 17277  HLchlt 39285  LHypclh 39920  EDRingcedring 40689  DVecHcdvh 41014  HDMapchdma 41728  HGMapchg 41819  HLHilchlh 41868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-2 12310  df-3 12311  df-4 12312  df-5 12313  df-6 12314  df-7 12315  df-8 12316  df-n0 12509  df-z 12596  df-uz 12860  df-fz 13529  df-struct 17165  df-slot 17200  df-ndx 17212  df-base 17229  df-plusg 17285  df-sca 17288  df-vsca 17289  df-ip 17290  df-hlhil 41869
This theorem is referenced by:  hlhilslem  41874  hlhilslemOLD  41875  hlhilnvl  41890
  Copyright terms: Public domain W3C validator