Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilsca Structured version   Visualization version   GIF version

Theorem hlhilsca 41922
Description: The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilbase.h 𝐻 = (LHyp‘𝐾)
hlhilbase.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilbase.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilsca.e 𝐸 = ((EDRing‘𝐾)‘𝑊)
hlhilsca.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hlhilsca.r 𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)
Assertion
Ref Expression
hlhilsca (𝜑𝑅 = (Scalar‘𝑈))

Proof of Theorem hlhilsca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhilsca.r . . . 4 𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)
2 ovex 7402 . . . 4 (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩) ∈ V
31, 2eqeltri 2824 . . 3 𝑅 ∈ V
4 eqid 2729 . . . 4 ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})
54phlsca 17288 . . 3 (𝑅 ∈ V → 𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
63, 5ax-mp 5 . 2 𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
7 hlhilbase.h . . . 4 𝐻 = (LHyp‘𝐾)
8 hlhilbase.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
9 eqid 2729 . . . 4 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
10 eqid 2729 . . . 4 (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))
11 eqid 2729 . . . 4 (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊))
12 hlhilsca.e . . . 4 𝐸 = ((EDRing‘𝐾)‘𝑊)
13 hlhilsca.g . . . 4 𝐺 = ((HGMap‘𝐾)‘𝑊)
14 eqid 2729 . . . 4 ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))
15 eqid 2729 . . . 4 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
16 eqid 2729 . . . 4 (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))
17 hlhilbase.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
187, 8, 9, 10, 11, 12, 13, 1, 14, 15, 16, 17hlhilset 41921 . . 3 (𝜑𝑈 = ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
1918fveq2d 6844 . 2 (𝜑 → (Scalar‘𝑈) = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
206, 19eqtr4id 2783 1 (𝜑𝑅 = (Scalar‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  {cpr 4587  {ctp 4589  cop 4591  cfv 6499  (class class class)co 7369  cmpo 7371   sSet csts 17109  ndxcnx 17139  Basecbs 17155  +gcplusg 17196  *𝑟cstv 17198  Scalarcsca 17199   ·𝑠 cvsca 17200  ·𝑖cip 17201  HLchlt 39336  LHypclh 39971  EDRingcedring 40740  DVecHcdvh 41065  HDMapchdma 41779  HGMapchg 41870  HLHilchlh 41919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-sca 17212  df-vsca 17213  df-ip 17214  df-hlhil 41920
This theorem is referenced by:  hlhilslem  41925  hlhilnvl  41937
  Copyright terms: Public domain W3C validator