![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilsca | Structured version Visualization version GIF version |
Description: The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
Ref | Expression |
---|---|
hlhilbase.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilbase.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilbase.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhilsca.e | ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) |
hlhilsca.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hlhilsca.r | ⊢ 𝑅 = (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) |
Ref | Expression |
---|---|
hlhilsca | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilsca.r | . . . 4 ⊢ 𝑅 = (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) | |
2 | ovex 7468 | . . . 4 ⊢ (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) ∈ V | |
3 | 1, 2 | eqeltri 2836 | . . 3 ⊢ 𝑅 ∈ V |
4 | eqid 2736 | . . . 4 ⊢ ({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) | |
5 | 4 | phlsca 17401 | . . 3 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
6 | 3, 5 | ax-mp 5 | . 2 ⊢ 𝑅 = (Scalar‘({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
7 | hlhilbase.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | hlhilbase.u | . . . 4 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
9 | eqid 2736 | . . . 4 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
10 | eqid 2736 | . . . 4 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
11 | eqid 2736 | . . . 4 ⊢ (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊)) | |
12 | hlhilsca.e | . . . 4 ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) | |
13 | hlhilsca.g | . . . 4 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
14 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) | |
15 | eqid 2736 | . . . 4 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
16 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) | |
17 | hlhilbase.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
18 | 7, 8, 9, 10, 11, 12, 13, 1, 14, 15, 16, 17 | hlhilset 41929 | . . 3 ⊢ (𝜑 → 𝑈 = ({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
19 | 18 | fveq2d 6915 | . 2 ⊢ (𝜑 → (Scalar‘𝑈) = (Scalar‘({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
20 | 6, 19 | eqtr4id 2795 | 1 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1538 ∈ wcel 2107 Vcvv 3479 ∪ cun 3962 {cpr 4634 {ctp 4636 〈cop 4638 ‘cfv 6566 (class class class)co 7435 ∈ cmpo 7437 sSet csts 17203 ndxcnx 17233 Basecbs 17251 +gcplusg 17304 *𝑟cstv 17306 Scalarcsca 17307 ·𝑠 cvsca 17308 ·𝑖cip 17309 HLchlt 39344 LHypclh 39979 EDRingcedring 40748 DVecHcdvh 41073 HDMapchdma 41787 HGMapchg 41878 HLHilchlh 41927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-n0 12531 df-z 12618 df-uz 12883 df-fz 13551 df-struct 17187 df-slot 17222 df-ndx 17234 df-base 17252 df-plusg 17317 df-sca 17320 df-vsca 17321 df-ip 17322 df-hlhil 41928 |
This theorem is referenced by: hlhilslem 41933 hlhilslemOLD 41934 hlhilnvl 41949 |
Copyright terms: Public domain | W3C validator |