Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilsca Structured version   Visualization version   GIF version

Theorem hlhilsca 39595
Description: The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilbase.h 𝐻 = (LHyp‘𝐾)
hlhilbase.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilbase.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilsca.e 𝐸 = ((EDRing‘𝐾)‘𝑊)
hlhilsca.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hlhilsca.r 𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)
Assertion
Ref Expression
hlhilsca (𝜑𝑅 = (Scalar‘𝑈))

Proof of Theorem hlhilsca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhilsca.r . . . 4 𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)
2 ovex 7206 . . . 4 (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩) ∈ V
31, 2eqeltri 2830 . . 3 𝑅 ∈ V
4 eqid 2739 . . . 4 ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})
54phlsca 16762 . . 3 (𝑅 ∈ V → 𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
63, 5ax-mp 5 . 2 𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
7 hlhilbase.h . . . 4 𝐻 = (LHyp‘𝐾)
8 hlhilbase.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
9 eqid 2739 . . . 4 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
10 eqid 2739 . . . 4 (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))
11 eqid 2739 . . . 4 (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊))
12 hlhilsca.e . . . 4 𝐸 = ((EDRing‘𝐾)‘𝑊)
13 hlhilsca.g . . . 4 𝐺 = ((HGMap‘𝐾)‘𝑊)
14 eqid 2739 . . . 4 ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))
15 eqid 2739 . . . 4 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
16 eqid 2739 . . . 4 (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))
17 hlhilbase.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
187, 8, 9, 10, 11, 12, 13, 1, 14, 15, 16, 17hlhilset 39594 . . 3 (𝜑𝑈 = ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
1918fveq2d 6681 . 2 (𝜑 → (Scalar‘𝑈) = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
206, 19eqtr4id 2793 1 (𝜑𝑅 = (Scalar‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  Vcvv 3399  cun 3842  {cpr 4519  {ctp 4521  cop 4523  cfv 6340  (class class class)co 7173  cmpo 7175  ndxcnx 16586   sSet csts 16587  Basecbs 16589  +gcplusg 16671  *𝑟cstv 16673  Scalarcsca 16674   ·𝑠 cvsca 16675  ·𝑖cip 16676  HLchlt 37010  LHypclh 37644  EDRingcedring 38413  DVecHcdvh 38738  HDMapchdma 39452  HGMapchg 39543  HLHilchlh 39592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-n0 11980  df-z 12066  df-uz 12328  df-fz 12985  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-plusg 16684  df-sca 16687  df-vsca 16688  df-ip 16689  df-hlhil 39593
This theorem is referenced by:  hlhilslem  39598  hlhilnvl  39610
  Copyright terms: Public domain W3C validator