| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilsca | Structured version Visualization version GIF version | ||
| Description: The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhilbase.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhilbase.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhilbase.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hlhilsca.e | ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) |
| hlhilsca.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| hlhilsca.r | ⊢ 𝑅 = (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) |
| Ref | Expression |
|---|---|
| hlhilsca | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhilsca.r | . . . 4 ⊢ 𝑅 = (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) | |
| 2 | ovex 7427 | . . . 4 ⊢ (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) ∈ V | |
| 3 | 1, 2 | eqeltri 2825 | . . 3 ⊢ 𝑅 ∈ V |
| 4 | eqid 2730 | . . . 4 ⊢ ({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) | |
| 5 | 4 | phlsca 17318 | . . 3 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
| 6 | 3, 5 | ax-mp 5 | . 2 ⊢ 𝑅 = (Scalar‘({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
| 7 | hlhilbase.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | hlhilbase.u | . . . 4 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 9 | eqid 2730 | . . . 4 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 10 | eqid 2730 | . . . 4 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
| 11 | eqid 2730 | . . . 4 ⊢ (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊)) | |
| 12 | hlhilsca.e | . . . 4 ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) | |
| 13 | hlhilsca.g | . . . 4 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
| 14 | eqid 2730 | . . . 4 ⊢ ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) | |
| 15 | eqid 2730 | . . . 4 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
| 16 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) | |
| 17 | hlhilbase.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 18 | 7, 8, 9, 10, 11, 12, 13, 1, 14, 15, 16, 17 | hlhilset 41920 | . . 3 ⊢ (𝜑 → 𝑈 = ({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
| 19 | 18 | fveq2d 6869 | . 2 ⊢ (𝜑 → (Scalar‘𝑈) = (Scalar‘({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
| 20 | 6, 19 | eqtr4id 2784 | 1 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∪ cun 3920 {cpr 4599 {ctp 4601 〈cop 4603 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 sSet csts 17139 ndxcnx 17169 Basecbs 17185 +gcplusg 17226 *𝑟cstv 17228 Scalarcsca 17229 ·𝑠 cvsca 17230 ·𝑖cip 17231 HLchlt 39335 LHypclh 39970 EDRingcedring 40739 DVecHcdvh 41064 HDMapchdma 41778 HGMapchg 41869 HLHilchlh 41918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-n0 12459 df-z 12546 df-uz 12810 df-fz 13482 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-sca 17242 df-vsca 17243 df-ip 17244 df-hlhil 41919 |
| This theorem is referenced by: hlhilslem 41924 hlhilnvl 41936 |
| Copyright terms: Public domain | W3C validator |