Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilsca Structured version   Visualization version   GIF version

Theorem hlhilsca 39111
Description: The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilbase.h 𝐻 = (LHyp‘𝐾)
hlhilbase.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilbase.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilsca.e 𝐸 = ((EDRing‘𝐾)‘𝑊)
hlhilsca.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hlhilsca.r 𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)
Assertion
Ref Expression
hlhilsca (𝜑𝑅 = (Scalar‘𝑈))

Proof of Theorem hlhilsca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhilbase.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hlhilbase.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
3 eqid 2821 . . . 4 ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊)
4 eqid 2821 . . . 4 (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊))
5 eqid 2821 . . . 4 (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊))
6 hlhilsca.e . . . 4 𝐸 = ((EDRing‘𝐾)‘𝑊)
7 hlhilsca.g . . . 4 𝐺 = ((HGMap‘𝐾)‘𝑊)
8 hlhilsca.r . . . 4 𝑅 = (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩)
9 eqid 2821 . . . 4 ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))
10 eqid 2821 . . . 4 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
11 eqid 2821 . . . 4 (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))
12 hlhilbase.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12hlhilset 39110 . . 3 (𝜑𝑈 = ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
1413fveq2d 6647 . 2 (𝜑 → (Scalar‘𝑈) = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
15 ovex 7163 . . . 4 (𝐸 sSet ⟨(*𝑟‘ndx), 𝐺⟩) ∈ V
168, 15eqeltri 2908 . . 3 𝑅 ∈ V
17 eqid 2821 . . . 4 ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})
1817phlsca 16634 . . 3 (𝑅 ∈ V → 𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
1916, 18ax-mp 5 . 2 𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
2014, 19syl6reqr 2875 1 (𝜑𝑅 = (Scalar‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3471  cun 3908  {cpr 4542  {ctp 4544  cop 4546  cfv 6328  (class class class)co 7130  cmpo 7132  ndxcnx 16458   sSet csts 16459  Basecbs 16461  +gcplusg 16543  *𝑟cstv 16545  Scalarcsca 16546   ·𝑠 cvsca 16547  ·𝑖cip 16548  HLchlt 36526  LHypclh 37160  EDRingcedring 37929  DVecHcdvh 38254  HDMapchdma 38968  HGMapchg 39059  HLHilchlh 39108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-plusg 16556  df-sca 16559  df-vsca 16560  df-ip 16561  df-hlhil 39109
This theorem is referenced by:  hlhilslem  39114  hlhilnvl  39126
  Copyright terms: Public domain W3C validator