| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilsca | Structured version Visualization version GIF version | ||
| Description: The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhilbase.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhilbase.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhilbase.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hlhilsca.e | ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) |
| hlhilsca.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| hlhilsca.r | ⊢ 𝑅 = (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) |
| Ref | Expression |
|---|---|
| hlhilsca | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhilsca.r | . . . 4 ⊢ 𝑅 = (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) | |
| 2 | ovex 7445 | . . . 4 ⊢ (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) ∈ V | |
| 3 | 1, 2 | eqeltri 2829 | . . 3 ⊢ 𝑅 ∈ V |
| 4 | eqid 2734 | . . . 4 ⊢ ({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) | |
| 5 | 4 | phlsca 17364 | . . 3 ⊢ (𝑅 ∈ V → 𝑅 = (Scalar‘({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
| 6 | 3, 5 | ax-mp 5 | . 2 ⊢ 𝑅 = (Scalar‘({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
| 7 | hlhilbase.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | hlhilbase.u | . . . 4 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 9 | eqid 2734 | . . . 4 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
| 10 | eqid 2734 | . . . 4 ⊢ (Base‘((DVecH‘𝐾)‘𝑊)) = (Base‘((DVecH‘𝐾)‘𝑊)) | |
| 11 | eqid 2734 | . . . 4 ⊢ (+g‘((DVecH‘𝐾)‘𝑊)) = (+g‘((DVecH‘𝐾)‘𝑊)) | |
| 12 | hlhilsca.e | . . . 4 ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) | |
| 13 | hlhilsca.g | . . . 4 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
| 14 | eqid 2734 | . . . 4 ⊢ ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) = ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊)) | |
| 15 | eqid 2734 | . . . 4 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
| 16 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) | |
| 17 | hlhilbase.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 18 | 7, 8, 9, 10, 11, 12, 13, 1, 14, 15, 16, 17 | hlhilset 41870 | . . 3 ⊢ (𝜑 → 𝑈 = ({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
| 19 | 18 | fveq2d 6889 | . 2 ⊢ (𝜑 → (Scalar‘𝑈) = (Scalar‘({〈(Base‘ndx), (Base‘((DVecH‘𝐾)‘𝑊))〉, 〈(+g‘ndx), (+g‘((DVecH‘𝐾)‘𝑊))〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘((DVecH‘𝐾)‘𝑊))〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘((DVecH‘𝐾)‘𝑊)), 𝑦 ∈ (Base‘((DVecH‘𝐾)‘𝑊)) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
| 20 | 6, 19 | eqtr4id 2788 | 1 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∪ cun 3929 {cpr 4608 {ctp 4610 〈cop 4612 ‘cfv 6540 (class class class)co 7412 ∈ cmpo 7414 sSet csts 17181 ndxcnx 17211 Basecbs 17228 +gcplusg 17272 *𝑟cstv 17274 Scalarcsca 17275 ·𝑠 cvsca 17276 ·𝑖cip 17277 HLchlt 39285 LHypclh 39920 EDRingcedring 40689 DVecHcdvh 41014 HDMapchdma 41728 HGMapchg 41819 HLHilchlh 41868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-n0 12509 df-z 12596 df-uz 12860 df-fz 13529 df-struct 17165 df-slot 17200 df-ndx 17212 df-base 17229 df-plusg 17285 df-sca 17288 df-vsca 17289 df-ip 17290 df-hlhil 41869 |
| This theorem is referenced by: hlhilslem 41874 hlhilslemOLD 41875 hlhilnvl 41890 |
| Copyright terms: Public domain | W3C validator |