![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilip | Structured version Visualization version GIF version |
Description: Inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
Ref | Expression |
---|---|
hlhilip.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilip.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
hlhilip.v | ⊢ 𝑉 = (Base‘𝐿) |
hlhilip.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hlhilip.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilip.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhilip.p | ⊢ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) |
Ref | Expression |
---|---|
hlhilip | ⊢ (𝜑 → , = (·𝑖‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilip.p | . . . 4 ⊢ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) | |
2 | hlhilip.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝐿) | |
3 | 2 | fvexi 6933 | . . . . 5 ⊢ 𝑉 ∈ V |
4 | 3, 3 | mpoex 8116 | . . . 4 ⊢ (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) ∈ V |
5 | 1, 4 | eqeltri 2834 | . . 3 ⊢ , ∈ V |
6 | eqid 2734 | . . . 4 ⊢ ({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), , 〉}) = ({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), , 〉}) | |
7 | 6 | phlip 17405 | . . 3 ⊢ ( , ∈ V → , = (·𝑖‘({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), , 〉}))) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ , = (·𝑖‘({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), , 〉})) |
9 | hlhilip.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
10 | hlhilip.u | . . . 4 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
11 | hlhilip.l | . . . 4 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
12 | eqid 2734 | . . . 4 ⊢ (+g‘𝐿) = (+g‘𝐿) | |
13 | eqid 2734 | . . . 4 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
14 | eqid 2734 | . . . 4 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
15 | eqid 2734 | . . . 4 ⊢ (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) | |
16 | eqid 2734 | . . . 4 ⊢ ( ·𝑠 ‘𝐿) = ( ·𝑠 ‘𝐿) | |
17 | hlhilip.s | . . . 4 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
18 | hlhilip.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
19 | 9, 10, 11, 2, 12, 13, 14, 15, 16, 17, 1, 18 | hlhilset 41840 | . . 3 ⊢ (𝜑 → 𝑈 = ({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), , 〉})) |
20 | 19 | fveq2d 6923 | . 2 ⊢ (𝜑 → (·𝑖‘𝑈) = (·𝑖‘({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), , 〉}))) |
21 | 8, 20 | eqtr4id 2793 | 1 ⊢ (𝜑 → , = (·𝑖‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2103 Vcvv 3482 ∪ cun 3968 {cpr 4650 {ctp 4652 〈cop 4654 ‘cfv 6572 (class class class)co 7445 ∈ cmpo 7447 sSet csts 17205 ndxcnx 17235 Basecbs 17253 +gcplusg 17306 *𝑟cstv 17308 Scalarcsca 17309 ·𝑠 cvsca 17310 ·𝑖cip 17311 HLchlt 39255 LHypclh 39890 EDRingcedring 40659 DVecHcdvh 40984 HDMapchdma 41698 HGMapchg 41789 HLHilchlh 41838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-2 12352 df-3 12353 df-4 12354 df-5 12355 df-6 12356 df-7 12357 df-8 12358 df-n0 12550 df-z 12636 df-uz 12900 df-fz 13564 df-struct 17189 df-slot 17224 df-ndx 17236 df-base 17254 df-plusg 17319 df-sca 17322 df-vsca 17323 df-ip 17324 df-hlhil 41839 |
This theorem is referenced by: hlhilipval 41859 |
Copyright terms: Public domain | W3C validator |