| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilip | Structured version Visualization version GIF version | ||
| Description: Inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhilip.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhilip.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
| hlhilip.v | ⊢ 𝑉 = (Base‘𝐿) |
| hlhilip.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hlhilip.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhilip.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hlhilip.p | ⊢ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) |
| Ref | Expression |
|---|---|
| hlhilip | ⊢ (𝜑 → , = (·𝑖‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhilip.p | . . . 4 ⊢ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) | |
| 2 | hlhilip.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝐿) | |
| 3 | 2 | fvexi 6836 | . . . . 5 ⊢ 𝑉 ∈ V |
| 4 | 3, 3 | mpoex 8011 | . . . 4 ⊢ (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) ∈ V |
| 5 | 1, 4 | eqeltri 2827 | . . 3 ⊢ , ∈ V |
| 6 | eqid 2731 | . . . 4 ⊢ ({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), , 〉}) = ({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), , 〉}) | |
| 7 | 6 | phlip 17255 | . . 3 ⊢ ( , ∈ V → , = (·𝑖‘({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), , 〉}))) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ , = (·𝑖‘({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), , 〉})) |
| 9 | hlhilip.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 10 | hlhilip.u | . . . 4 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 11 | hlhilip.l | . . . 4 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
| 12 | eqid 2731 | . . . 4 ⊢ (+g‘𝐿) = (+g‘𝐿) | |
| 13 | eqid 2731 | . . . 4 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
| 14 | eqid 2731 | . . . 4 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
| 15 | eqid 2731 | . . . 4 ⊢ (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) | |
| 16 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝐿) = ( ·𝑠 ‘𝐿) | |
| 17 | hlhilip.s | . . . 4 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 18 | hlhilip.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 19 | 9, 10, 11, 2, 12, 13, 14, 15, 16, 17, 1, 18 | hlhilset 41979 | . . 3 ⊢ (𝜑 → 𝑈 = ({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), , 〉})) |
| 20 | 19 | fveq2d 6826 | . 2 ⊢ (𝜑 → (·𝑖‘𝑈) = (·𝑖‘({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), (+g‘𝐿)〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), , 〉}))) |
| 21 | 8, 20 | eqtr4id 2785 | 1 ⊢ (𝜑 → , = (·𝑖‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3900 {cpr 4578 {ctp 4580 〈cop 4582 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 sSet csts 17074 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 *𝑟cstv 17163 Scalarcsca 17164 ·𝑠 cvsca 17165 ·𝑖cip 17166 HLchlt 39395 LHypclh 40029 EDRingcedring 40798 DVecHcdvh 41123 HDMapchdma 41837 HGMapchg 41928 HLHilchlh 41977 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-sca 17177 df-vsca 17178 df-ip 17179 df-hlhil 41978 |
| This theorem is referenced by: hlhilipval 41994 |
| Copyright terms: Public domain | W3C validator |