Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilip Structured version   Visualization version   GIF version

Theorem hlhilip 38016
Description: Inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilip.h 𝐻 = (LHyp‘𝐾)
hlhilip.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilip.v 𝑉 = (Base‘𝐿)
hlhilip.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hlhilip.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilip.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilip.p , = (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))
Assertion
Ref Expression
hlhilip (𝜑, = (·𝑖𝑈))
Distinct variable groups:   𝑥,𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦)   , (𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem hlhilip
StepHypRef Expression
1 hlhilip.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hlhilip.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
3 hlhilip.l . . . 4 𝐿 = ((DVecH‘𝐾)‘𝑊)
4 hlhilip.v . . . 4 𝑉 = (Base‘𝐿)
5 eqid 2825 . . . 4 (+g𝐿) = (+g𝐿)
6 eqid 2825 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
7 eqid 2825 . . . 4 ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊)
8 eqid 2825 . . . 4 (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩) = (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)
9 eqid 2825 . . . 4 ( ·𝑠𝐿) = ( ·𝑠𝐿)
10 hlhilip.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
11 hlhilip.p . . . 4 , = (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥))
12 hlhilip.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12hlhilset 38002 . . 3 (𝜑𝑈 = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩}))
1413fveq2d 6437 . 2 (𝜑 → (·𝑖𝑈) = (·𝑖‘({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩})))
154fvexi 6447 . . . . 5 𝑉 ∈ V
1615, 15mpt2ex 7510 . . . 4 (𝑥𝑉, 𝑦𝑉 ↦ ((𝑆𝑦)‘𝑥)) ∈ V
1711, 16eqeltri 2902 . . 3 , ∈ V
18 eqid 2825 . . . 4 ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩}) = ({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩})
1918phlip 16398 . . 3 ( , ∈ V → , = (·𝑖‘({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩})))
2017, 19ax-mp 5 . 2 , = (·𝑖‘({⟨(Base‘ndx), 𝑉⟩, ⟨(+g‘ndx), (+g𝐿)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), , ⟩}))
2114, 20syl6reqr 2880 1 (𝜑, = (·𝑖𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  Vcvv 3414  cun 3796  {cpr 4399  {ctp 4401  cop 4403  cfv 6123  (class class class)co 6905  cmpt2 6907  ndxcnx 16219   sSet csts 16220  Basecbs 16222  +gcplusg 16305  *𝑟cstv 16307  Scalarcsca 16308   ·𝑠 cvsca 16309  ·𝑖cip 16310  HLchlt 35418  LHypclh 36052  EDRingcedring 36821  DVecHcdvh 37146  HDMapchdma 37860  HGMapchg 37951  HLHilchlh 38000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-plusg 16318  df-sca 16321  df-vsca 16322  df-ip 16323  df-hlhil 38001
This theorem is referenced by:  hlhilipval  38017
  Copyright terms: Public domain W3C validator