| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilplus | Structured version Visualization version GIF version | ||
| Description: The vector addition for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) |
| Ref | Expression |
|---|---|
| hlhilbase.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hlhilbase.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
| hlhilbase.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hlhilbase.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
| hlhilplus.a | ⊢ + = (+g‘𝐿) |
| Ref | Expression |
|---|---|
| hlhilplus | ⊢ (𝜑 → + = (+g‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlhilplus.a | . . . 4 ⊢ + = (+g‘𝐿) | |
| 2 | 1 | fvexi 6854 | . . 3 ⊢ + ∈ V |
| 3 | eqid 2729 | . . . 4 ⊢ ({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) | |
| 4 | 3 | phlplusg 17287 | . . 3 ⊢ ( + ∈ V → + = (+g‘({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
| 5 | 2, 4 | ax-mp 5 | . 2 ⊢ + = (+g‘({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
| 6 | hlhilbase.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | hlhilbase.u | . . . 4 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
| 8 | hlhilbase.l | . . . 4 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
| 9 | eqid 2729 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 10 | eqid 2729 | . . . 4 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
| 11 | eqid 2729 | . . . 4 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
| 12 | eqid 2729 | . . . 4 ⊢ (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) | |
| 13 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝐿) = ( ·𝑠 ‘𝐿) | |
| 14 | eqid 2729 | . . . 4 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
| 15 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) | |
| 16 | hlhilbase.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 17 | 6, 7, 8, 9, 1, 10, 11, 12, 13, 14, 15, 16 | hlhilset 41901 | . . 3 ⊢ (𝜑 → 𝑈 = ({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
| 18 | 17 | fveq2d 6844 | . 2 ⊢ (𝜑 → (+g‘𝑈) = (+g‘({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
| 19 | 5, 18 | eqtr4id 2783 | 1 ⊢ (𝜑 → + = (+g‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∪ cun 3909 {cpr 4587 {ctp 4589 〈cop 4591 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 sSet csts 17109 ndxcnx 17139 Basecbs 17155 +gcplusg 17196 *𝑟cstv 17198 Scalarcsca 17199 ·𝑠 cvsca 17200 ·𝑖cip 17201 HLchlt 39316 LHypclh 39951 EDRingcedring 40720 DVecHcdvh 41045 HDMapchdma 41759 HGMapchg 41850 HLHilchlh 41899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-sca 17212 df-vsca 17213 df-ip 17214 df-hlhil 41900 |
| This theorem is referenced by: hlhillvec 41918 hlhil0 41922 hlhillsm 41923 hlhilphllem 41926 |
| Copyright terms: Public domain | W3C validator |