![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilplus | Structured version Visualization version GIF version |
Description: The vector addition for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) |
Ref | Expression |
---|---|
hlhilbase.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilbase.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilbase.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hlhilbase.l | ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) |
hlhilplus.a | ⊢ + = (+g‘𝐿) |
Ref | Expression |
---|---|
hlhilplus | ⊢ (𝜑 → + = (+g‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilplus.a | . . . 4 ⊢ + = (+g‘𝐿) | |
2 | 1 | fvexi 6906 | . . 3 ⊢ + ∈ V |
3 | eqid 2728 | . . . 4 ⊢ ({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) = ({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}) | |
4 | 3 | phlplusg 17323 | . . 3 ⊢ ( + ∈ V → + = (+g‘({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
5 | 2, 4 | ax-mp 5 | . 2 ⊢ + = (+g‘({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
6 | hlhilbase.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | hlhilbase.u | . . . 4 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
8 | hlhilbase.l | . . . 4 ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) | |
9 | eqid 2728 | . . . 4 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
10 | eqid 2728 | . . . 4 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
11 | eqid 2728 | . . . 4 ⊢ ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊) | |
12 | eqid 2728 | . . . 4 ⊢ (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) = (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉) | |
13 | eqid 2728 | . . . 4 ⊢ ( ·𝑠 ‘𝐿) = ( ·𝑠 ‘𝐿) | |
14 | eqid 2728 | . . . 4 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
15 | eqid 2728 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) | |
16 | hlhilbase.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | 6, 7, 8, 9, 1, 10, 11, 12, 13, 14, 15, 16 | hlhilset 41402 | . . 3 ⊢ (𝜑 → 𝑈 = ({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉})) |
18 | 17 | fveq2d 6896 | . 2 ⊢ (𝜑 → (+g‘𝑈) = (+g‘({〈(Base‘ndx), (Base‘𝐿)〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝐿)〉, 〈(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))〉}))) |
19 | 5, 18 | eqtr4id 2787 | 1 ⊢ (𝜑 → + = (+g‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ∪ cun 3943 {cpr 4627 {ctp 4629 〈cop 4631 ‘cfv 6543 (class class class)co 7415 ∈ cmpo 7417 sSet csts 17126 ndxcnx 17156 Basecbs 17174 +gcplusg 17227 *𝑟cstv 17229 Scalarcsca 17230 ·𝑠 cvsca 17231 ·𝑖cip 17232 HLchlt 38817 LHypclh 39452 EDRingcedring 40221 DVecHcdvh 40546 HDMapchdma 41260 HGMapchg 41351 HLHilchlh 41400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-struct 17110 df-slot 17145 df-ndx 17157 df-base 17175 df-plusg 17240 df-sca 17243 df-vsca 17244 df-ip 17245 df-hlhil 41401 |
This theorem is referenced by: hlhillvec 41423 hlhil0 41427 hlhillsm 41428 hlhilphllem 41431 |
Copyright terms: Public domain | W3C validator |