Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilplus Structured version   Visualization version   GIF version

Theorem hlhilplus 39930
Description: The vector addition for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.)
Hypotheses
Ref Expression
hlhilbase.h 𝐻 = (LHyp‘𝐾)
hlhilbase.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilbase.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hlhilbase.l 𝐿 = ((DVecH‘𝐾)‘𝑊)
hlhilplus.a + = (+g𝐿)
Assertion
Ref Expression
hlhilplus (𝜑+ = (+g𝑈))

Proof of Theorem hlhilplus
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlhilplus.a . . . 4 + = (+g𝐿)
21fvexi 6782 . . 3 + ∈ V
3 eqid 2739 . . . 4 ({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}) = ({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})
43phlplusg 17039 . . 3 ( + ∈ V → + = (+g‘({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
52, 4ax-mp 5 . 2 + = (+g‘({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
6 hlhilbase.h . . . 4 𝐻 = (LHyp‘𝐾)
7 hlhilbase.u . . . 4 𝑈 = ((HLHil‘𝐾)‘𝑊)
8 hlhilbase.l . . . 4 𝐿 = ((DVecH‘𝐾)‘𝑊)
9 eqid 2739 . . . 4 (Base‘𝐿) = (Base‘𝐿)
10 eqid 2739 . . . 4 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
11 eqid 2739 . . . 4 ((HGMap‘𝐾)‘𝑊) = ((HGMap‘𝐾)‘𝑊)
12 eqid 2739 . . . 4 (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩) = (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)
13 eqid 2739 . . . 4 ( ·𝑠𝐿) = ( ·𝑠𝐿)
14 eqid 2739 . . . 4 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
15 eqid 2739 . . . 4 (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥)) = (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))
16 hlhilbase.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
176, 7, 8, 9, 1, 10, 11, 12, 13, 14, 15, 16hlhilset 39927 . . 3 (𝜑𝑈 = ({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩}))
1817fveq2d 6772 . 2 (𝜑 → (+g𝑈) = (+g‘({⟨(Base‘ndx), (Base‘𝐿)⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝐾)‘𝑊)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝐿)⟩, ⟨(·𝑖‘ndx), (𝑥 ∈ (Base‘𝐿), 𝑦 ∈ (Base‘𝐿) ↦ ((((HDMap‘𝐾)‘𝑊)‘𝑦)‘𝑥))⟩})))
195, 18eqtr4id 2798 1 (𝜑+ = (+g𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  cun 3889  {cpr 4568  {ctp 4570  cop 4572  cfv 6430  (class class class)co 7268  cmpo 7270   sSet csts 16845  ndxcnx 16875  Basecbs 16893  +gcplusg 16943  *𝑟cstv 16945  Scalarcsca 16946   ·𝑠 cvsca 16947  ·𝑖cip 16948  HLchlt 37343  LHypclh 37977  EDRingcedring 38746  DVecHcdvh 39071  HDMapchdma 39785  HGMapchg 39876  HLHilchlh 39925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-struct 16829  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-sca 16959  df-vsca 16960  df-ip 16961  df-hlhil 39926
This theorem is referenced by:  hlhillvec  39948  hlhil0  39952  hlhillsm  39953  hlhilphllem  39956
  Copyright terms: Public domain W3C validator