Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvoli2 Structured version   Visualization version   GIF version

Theorem lvoli2 36732
Description: The join of 4 different atoms is a lattice volume. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
lvoli2.l = (le‘𝐾)
lvoli2.j = (join‘𝐾)
lvoli2.a 𝐴 = (Atoms‘𝐾)
lvoli2.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvoli2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)

Proof of Theorem lvoli2
Dummy variables 𝑞 𝑝 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp12 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
2 simp13 1201 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
3 simp3 1134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
4 eqidd 2822 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))
5 neeq1 3078 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑞𝑃𝑞))
6 oveq1 7163 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝 𝑞) = (𝑃 𝑞))
76breq2d 5078 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑅 (𝑝 𝑞) ↔ 𝑅 (𝑃 𝑞)))
87notbid 320 . . . . . . . . 9 (𝑝 = 𝑃 → (¬ 𝑅 (𝑝 𝑞) ↔ ¬ 𝑅 (𝑃 𝑞)))
96oveq1d 7171 . . . . . . . . . . 11 (𝑝 = 𝑃 → ((𝑝 𝑞) 𝑅) = ((𝑃 𝑞) 𝑅))
109breq2d 5078 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑆 ((𝑝 𝑞) 𝑅) ↔ 𝑆 ((𝑃 𝑞) 𝑅)))
1110notbid 320 . . . . . . . . 9 (𝑝 = 𝑃 → (¬ 𝑆 ((𝑝 𝑞) 𝑅) ↔ ¬ 𝑆 ((𝑃 𝑞) 𝑅)))
125, 8, 113anbi123d 1432 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ↔ (𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅))))
139oveq1d 7171 . . . . . . . . 9 (𝑝 = 𝑃 → (((𝑝 𝑞) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆))
1413eqeq2d 2832 . . . . . . . 8 (𝑝 = 𝑃 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆)))
1512, 14anbi12d 632 . . . . . . 7 (𝑝 = 𝑃 → (((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) ↔ ((𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆))))
16 neeq2 3079 . . . . . . . . 9 (𝑞 = 𝑄 → (𝑃𝑞𝑃𝑄))
17 oveq2 7164 . . . . . . . . . . 11 (𝑞 = 𝑄 → (𝑃 𝑞) = (𝑃 𝑄))
1817breq2d 5078 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝑅 (𝑃 𝑞) ↔ 𝑅 (𝑃 𝑄)))
1918notbid 320 . . . . . . . . 9 (𝑞 = 𝑄 → (¬ 𝑅 (𝑃 𝑞) ↔ ¬ 𝑅 (𝑃 𝑄)))
2017oveq1d 7171 . . . . . . . . . . 11 (𝑞 = 𝑄 → ((𝑃 𝑞) 𝑅) = ((𝑃 𝑄) 𝑅))
2120breq2d 5078 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝑆 ((𝑃 𝑞) 𝑅) ↔ 𝑆 ((𝑃 𝑄) 𝑅)))
2221notbid 320 . . . . . . . . 9 (𝑞 = 𝑄 → (¬ 𝑆 ((𝑃 𝑞) 𝑅) ↔ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
2316, 19, 223anbi123d 1432 . . . . . . . 8 (𝑞 = 𝑄 → ((𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅)) ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))
2420oveq1d 7171 . . . . . . . . 9 (𝑞 = 𝑄 → (((𝑃 𝑞) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))
2524eqeq2d 2832 . . . . . . . 8 (𝑞 = 𝑄 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆)))
2623, 25anbi12d 632 . . . . . . 7 (𝑞 = 𝑄 → (((𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆)) ↔ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))))
2715, 26rspc2ev 3635 . . . . . 6 ((𝑃𝐴𝑄𝐴 ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))) → ∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
281, 2, 3, 4, 27syl112anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
29283exp 1115 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑅𝐴𝑆𝐴) → ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))))
30 simplrl 775 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → 𝑅𝐴)
31 simplrr 776 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → 𝑆𝐴)
32 simpr 487 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
33 breq1 5069 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑟 (𝑝 𝑞) ↔ 𝑅 (𝑝 𝑞)))
3433notbid 320 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑟 (𝑝 𝑞) ↔ ¬ 𝑅 (𝑝 𝑞)))
35 oveq2 7164 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → ((𝑝 𝑞) 𝑟) = ((𝑝 𝑞) 𝑅))
3635breq2d 5078 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑠 ((𝑝 𝑞) 𝑟) ↔ 𝑠 ((𝑝 𝑞) 𝑅)))
3736notbid 320 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑠 ((𝑝 𝑞) 𝑟) ↔ ¬ 𝑠 ((𝑝 𝑞) 𝑅)))
3834, 373anbi23d 1435 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅))))
3935oveq1d 7171 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (((𝑝 𝑞) 𝑟) 𝑠) = (((𝑝 𝑞) 𝑅) 𝑠))
4039eqeq2d 2832 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠)))
4138, 40anbi12d 632 . . . . . . . . . 10 (𝑟 = 𝑅 → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠))))
42 breq1 5069 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑠 ((𝑝 𝑞) 𝑅) ↔ 𝑆 ((𝑝 𝑞) 𝑅)))
4342notbid 320 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (¬ 𝑠 ((𝑝 𝑞) 𝑅) ↔ ¬ 𝑆 ((𝑝 𝑞) 𝑅)))
44433anbi3d 1438 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅)) ↔ (𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅))))
45 oveq2 7164 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (((𝑝 𝑞) 𝑅) 𝑠) = (((𝑝 𝑞) 𝑅) 𝑆))
4645eqeq2d 2832 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
4744, 46anbi12d 632 . . . . . . . . . 10 (𝑠 = 𝑆 → (((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠)) ↔ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))))
4841, 47rspc2ev 3635 . . . . . . . . 9 ((𝑅𝐴𝑆𝐴 ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))
4930, 31, 32, 48syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))
5049ex 415 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
5150reximdv 3273 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (∃𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
5251reximdv 3273 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
5352ex 415 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑅𝐴𝑆𝐴) → (∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))))
5429, 53syldd 72 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑅𝐴𝑆𝐴) → ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))))
55543imp 1107 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))
56 simp11 1199 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
5756hllatd 36515 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
58 eqid 2821 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
59 lvoli2.j . . . . . . 7 = (join‘𝐾)
60 lvoli2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6158, 59, 60hlatjcl 36518 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
62613ad2ant1 1129 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
63 simp2l 1195 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
6458, 60atbase 36440 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
6563, 64syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
6658, 59latjcl 17661 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
6757, 62, 65, 66syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
68 simp2r 1196 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
6958, 60atbase 36440 . . . . 5 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
7068, 69syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
7158, 59latjcl 17661 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (Base‘𝐾))
7257, 67, 70, 71syl3anc 1367 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (Base‘𝐾))
73 lvoli2.l . . . 4 = (le‘𝐾)
74 lvoli2.v . . . 4 𝑉 = (LVols‘𝐾)
7558, 73, 59, 60, 74islvol5 36730 . . 3 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑆) ∈ (Base‘𝐾)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
7656, 72, 75syl2anc 586 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
7755, 76mpbird 259 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  Latclat 17655  Atomscatm 36414  HLchlt 36501  LVolsclvol 36644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650  df-lvols 36651
This theorem is referenced by:  islvol2aN  36743  4atlem3  36747  2lplnja  36770
  Copyright terms: Public domain W3C validator