Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvoli2 Structured version   Visualization version   GIF version

Theorem lvoli2 39548
Description: The join of 4 different atoms is a lattice volume. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
lvoli2.l = (le‘𝐾)
lvoli2.j = (join‘𝐾)
lvoli2.a 𝐴 = (Atoms‘𝐾)
lvoli2.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvoli2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)

Proof of Theorem lvoli2
Dummy variables 𝑞 𝑝 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp12 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
2 simp13 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
3 simp3 1138 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
4 eqidd 2730 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))
5 neeq1 2987 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑞𝑃𝑞))
6 oveq1 7376 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝 𝑞) = (𝑃 𝑞))
76breq2d 5114 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑅 (𝑝 𝑞) ↔ 𝑅 (𝑃 𝑞)))
87notbid 318 . . . . . . . . 9 (𝑝 = 𝑃 → (¬ 𝑅 (𝑝 𝑞) ↔ ¬ 𝑅 (𝑃 𝑞)))
96oveq1d 7384 . . . . . . . . . . 11 (𝑝 = 𝑃 → ((𝑝 𝑞) 𝑅) = ((𝑃 𝑞) 𝑅))
109breq2d 5114 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑆 ((𝑝 𝑞) 𝑅) ↔ 𝑆 ((𝑃 𝑞) 𝑅)))
1110notbid 318 . . . . . . . . 9 (𝑝 = 𝑃 → (¬ 𝑆 ((𝑝 𝑞) 𝑅) ↔ ¬ 𝑆 ((𝑃 𝑞) 𝑅)))
125, 8, 113anbi123d 1438 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ↔ (𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅))))
139oveq1d 7384 . . . . . . . . 9 (𝑝 = 𝑃 → (((𝑝 𝑞) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆))
1413eqeq2d 2740 . . . . . . . 8 (𝑝 = 𝑃 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆)))
1512, 14anbi12d 632 . . . . . . 7 (𝑝 = 𝑃 → (((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) ↔ ((𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆))))
16 neeq2 2988 . . . . . . . . 9 (𝑞 = 𝑄 → (𝑃𝑞𝑃𝑄))
17 oveq2 7377 . . . . . . . . . . 11 (𝑞 = 𝑄 → (𝑃 𝑞) = (𝑃 𝑄))
1817breq2d 5114 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝑅 (𝑃 𝑞) ↔ 𝑅 (𝑃 𝑄)))
1918notbid 318 . . . . . . . . 9 (𝑞 = 𝑄 → (¬ 𝑅 (𝑃 𝑞) ↔ ¬ 𝑅 (𝑃 𝑄)))
2017oveq1d 7384 . . . . . . . . . . 11 (𝑞 = 𝑄 → ((𝑃 𝑞) 𝑅) = ((𝑃 𝑄) 𝑅))
2120breq2d 5114 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝑆 ((𝑃 𝑞) 𝑅) ↔ 𝑆 ((𝑃 𝑄) 𝑅)))
2221notbid 318 . . . . . . . . 9 (𝑞 = 𝑄 → (¬ 𝑆 ((𝑃 𝑞) 𝑅) ↔ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
2316, 19, 223anbi123d 1438 . . . . . . . 8 (𝑞 = 𝑄 → ((𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅)) ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))
2420oveq1d 7384 . . . . . . . . 9 (𝑞 = 𝑄 → (((𝑃 𝑞) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))
2524eqeq2d 2740 . . . . . . . 8 (𝑞 = 𝑄 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆)))
2623, 25anbi12d 632 . . . . . . 7 (𝑞 = 𝑄 → (((𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆)) ↔ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))))
2715, 26rspc2ev 3598 . . . . . 6 ((𝑃𝐴𝑄𝐴 ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))) → ∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
281, 2, 3, 4, 27syl112anc 1376 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
29283exp 1119 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑅𝐴𝑆𝐴) → ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))))
30 simplrl 776 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → 𝑅𝐴)
31 simplrr 777 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → 𝑆𝐴)
32 simpr 484 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
33 breq1 5105 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑟 (𝑝 𝑞) ↔ 𝑅 (𝑝 𝑞)))
3433notbid 318 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑟 (𝑝 𝑞) ↔ ¬ 𝑅 (𝑝 𝑞)))
35 oveq2 7377 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → ((𝑝 𝑞) 𝑟) = ((𝑝 𝑞) 𝑅))
3635breq2d 5114 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑠 ((𝑝 𝑞) 𝑟) ↔ 𝑠 ((𝑝 𝑞) 𝑅)))
3736notbid 318 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑠 ((𝑝 𝑞) 𝑟) ↔ ¬ 𝑠 ((𝑝 𝑞) 𝑅)))
3834, 373anbi23d 1441 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅))))
3935oveq1d 7384 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (((𝑝 𝑞) 𝑟) 𝑠) = (((𝑝 𝑞) 𝑅) 𝑠))
4039eqeq2d 2740 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠)))
4138, 40anbi12d 632 . . . . . . . . . 10 (𝑟 = 𝑅 → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠))))
42 breq1 5105 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑠 ((𝑝 𝑞) 𝑅) ↔ 𝑆 ((𝑝 𝑞) 𝑅)))
4342notbid 318 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (¬ 𝑠 ((𝑝 𝑞) 𝑅) ↔ ¬ 𝑆 ((𝑝 𝑞) 𝑅)))
44433anbi3d 1444 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅)) ↔ (𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅))))
45 oveq2 7377 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (((𝑝 𝑞) 𝑅) 𝑠) = (((𝑝 𝑞) 𝑅) 𝑆))
4645eqeq2d 2740 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
4744, 46anbi12d 632 . . . . . . . . . 10 (𝑠 = 𝑆 → (((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠)) ↔ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))))
4841, 47rspc2ev 3598 . . . . . . . . 9 ((𝑅𝐴𝑆𝐴 ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))
4930, 31, 32, 48syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))
5049ex 412 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
5150reximdv 3148 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (∃𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
5251reximdv 3148 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
5352ex 412 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑅𝐴𝑆𝐴) → (∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))))
5429, 53syldd 72 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑅𝐴𝑆𝐴) → ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))))
55543imp 1110 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))
56 simp11 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
5756hllatd 39330 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
58 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
59 lvoli2.j . . . . . . 7 = (join‘𝐾)
60 lvoli2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6158, 59, 60hlatjcl 39333 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
62613ad2ant1 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
63 simp2l 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
6458, 60atbase 39255 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
6563, 64syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
6658, 59latjcl 18374 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
6757, 62, 65, 66syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
68 simp2r 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
6958, 60atbase 39255 . . . . 5 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
7068, 69syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
7158, 59latjcl 18374 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (Base‘𝐾))
7257, 67, 70, 71syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (Base‘𝐾))
73 lvoli2.l . . . 4 = (le‘𝐾)
74 lvoli2.v . . . 4 𝑉 = (LVols‘𝐾)
7558, 73, 59, 60, 74islvol5 39546 . . 3 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑆) ∈ (Base‘𝐾)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
7656, 72, 75syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
7755, 76mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  Latclat 18366  Atomscatm 39229  HLchlt 39316  LVolsclvol 39460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467
This theorem is referenced by:  islvol2aN  39559  4atlem3  39563  2lplnja  39586
  Copyright terms: Public domain W3C validator