Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvoli2 Structured version   Visualization version   GIF version

Theorem lvoli2 39560
Description: The join of 4 different atoms is a lattice volume. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
lvoli2.l = (le‘𝐾)
lvoli2.j = (join‘𝐾)
lvoli2.a 𝐴 = (Atoms‘𝐾)
lvoli2.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvoli2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)

Proof of Theorem lvoli2
Dummy variables 𝑞 𝑝 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp12 1205 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
2 simp13 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
3 simp3 1138 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
4 eqidd 2730 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))
5 neeq1 2987 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑞𝑃𝑞))
6 oveq1 7356 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝 𝑞) = (𝑃 𝑞))
76breq2d 5104 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑅 (𝑝 𝑞) ↔ 𝑅 (𝑃 𝑞)))
87notbid 318 . . . . . . . . 9 (𝑝 = 𝑃 → (¬ 𝑅 (𝑝 𝑞) ↔ ¬ 𝑅 (𝑃 𝑞)))
96oveq1d 7364 . . . . . . . . . . 11 (𝑝 = 𝑃 → ((𝑝 𝑞) 𝑅) = ((𝑃 𝑞) 𝑅))
109breq2d 5104 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑆 ((𝑝 𝑞) 𝑅) ↔ 𝑆 ((𝑃 𝑞) 𝑅)))
1110notbid 318 . . . . . . . . 9 (𝑝 = 𝑃 → (¬ 𝑆 ((𝑝 𝑞) 𝑅) ↔ ¬ 𝑆 ((𝑃 𝑞) 𝑅)))
125, 8, 113anbi123d 1438 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ↔ (𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅))))
139oveq1d 7364 . . . . . . . . 9 (𝑝 = 𝑃 → (((𝑝 𝑞) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆))
1413eqeq2d 2740 . . . . . . . 8 (𝑝 = 𝑃 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆)))
1512, 14anbi12d 632 . . . . . . 7 (𝑝 = 𝑃 → (((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) ↔ ((𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆))))
16 neeq2 2988 . . . . . . . . 9 (𝑞 = 𝑄 → (𝑃𝑞𝑃𝑄))
17 oveq2 7357 . . . . . . . . . . 11 (𝑞 = 𝑄 → (𝑃 𝑞) = (𝑃 𝑄))
1817breq2d 5104 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝑅 (𝑃 𝑞) ↔ 𝑅 (𝑃 𝑄)))
1918notbid 318 . . . . . . . . 9 (𝑞 = 𝑄 → (¬ 𝑅 (𝑃 𝑞) ↔ ¬ 𝑅 (𝑃 𝑄)))
2017oveq1d 7364 . . . . . . . . . . 11 (𝑞 = 𝑄 → ((𝑃 𝑞) 𝑅) = ((𝑃 𝑄) 𝑅))
2120breq2d 5104 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝑆 ((𝑃 𝑞) 𝑅) ↔ 𝑆 ((𝑃 𝑄) 𝑅)))
2221notbid 318 . . . . . . . . 9 (𝑞 = 𝑄 → (¬ 𝑆 ((𝑃 𝑞) 𝑅) ↔ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
2316, 19, 223anbi123d 1438 . . . . . . . 8 (𝑞 = 𝑄 → ((𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅)) ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))
2420oveq1d 7364 . . . . . . . . 9 (𝑞 = 𝑄 → (((𝑃 𝑞) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))
2524eqeq2d 2740 . . . . . . . 8 (𝑞 = 𝑄 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆)))
2623, 25anbi12d 632 . . . . . . 7 (𝑞 = 𝑄 → (((𝑃𝑞 ∧ ¬ 𝑅 (𝑃 𝑞) ∧ ¬ 𝑆 ((𝑃 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑞) 𝑅) 𝑆)) ↔ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))))
2715, 26rspc2ev 3590 . . . . . 6 ((𝑃𝐴𝑄𝐴 ∧ ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑃 𝑄) 𝑅) 𝑆))) → ∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
281, 2, 3, 4, 27syl112anc 1376 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
29283exp 1119 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑅𝐴𝑆𝐴) → ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))))
30 simplrl 776 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → 𝑅𝐴)
31 simplrr 777 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → 𝑆𝐴)
32 simpr 484 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
33 breq1 5095 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑟 (𝑝 𝑞) ↔ 𝑅 (𝑝 𝑞)))
3433notbid 318 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑟 (𝑝 𝑞) ↔ ¬ 𝑅 (𝑝 𝑞)))
35 oveq2 7357 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → ((𝑝 𝑞) 𝑟) = ((𝑝 𝑞) 𝑅))
3635breq2d 5104 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (𝑠 ((𝑝 𝑞) 𝑟) ↔ 𝑠 ((𝑝 𝑞) 𝑅)))
3736notbid 318 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (¬ 𝑠 ((𝑝 𝑞) 𝑟) ↔ ¬ 𝑠 ((𝑝 𝑞) 𝑅)))
3834, 373anbi23d 1441 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅))))
3935oveq1d 7364 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (((𝑝 𝑞) 𝑟) 𝑠) = (((𝑝 𝑞) 𝑅) 𝑠))
4039eqeq2d 2740 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠)))
4138, 40anbi12d 632 . . . . . . . . . 10 (𝑟 = 𝑅 → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)) ↔ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠))))
42 breq1 5095 . . . . . . . . . . . . 13 (𝑠 = 𝑆 → (𝑠 ((𝑝 𝑞) 𝑅) ↔ 𝑆 ((𝑝 𝑞) 𝑅)))
4342notbid 318 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (¬ 𝑠 ((𝑝 𝑞) 𝑅) ↔ ¬ 𝑆 ((𝑝 𝑞) 𝑅)))
44433anbi3d 1444 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅)) ↔ (𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅))))
45 oveq2 7357 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (((𝑝 𝑞) 𝑅) 𝑠) = (((𝑝 𝑞) 𝑅) 𝑆))
4645eqeq2d 2740 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)))
4744, 46anbi12d 632 . . . . . . . . . 10 (𝑠 = 𝑆 → (((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑠)) ↔ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))))
4841, 47rspc2ev 3590 . . . . . . . . 9 ((𝑅𝐴𝑆𝐴 ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))
4930, 31, 32, 48syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆))) → ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))
5049ex 412 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
5150reximdv 3144 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (∃𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
5251reximdv 3144 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
5352ex 412 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑅𝐴𝑆𝐴) → (∃𝑝𝐴𝑞𝐴 ((𝑝𝑞 ∧ ¬ 𝑅 (𝑝 𝑞) ∧ ¬ 𝑆 ((𝑝 𝑞) 𝑅)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑅) 𝑆)) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))))
5429, 53syldd 72 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑅𝐴𝑆𝐴) → ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))))
55543imp 1110 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠)))
56 simp11 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
5756hllatd 39343 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
58 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
59 lvoli2.j . . . . . . 7 = (join‘𝐾)
60 lvoli2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6158, 59, 60hlatjcl 39346 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
62613ad2ant1 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
63 simp2l 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
6458, 60atbase 39268 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
6563, 64syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
6658, 59latjcl 18345 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
6757, 62, 65, 66syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
68 simp2r 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
6958, 60atbase 39268 . . . . 5 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
7068, 69syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
7158, 59latjcl 18345 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (Base‘𝐾))
7257, 67, 70, 71syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (Base‘𝐾))
73 lvoli2.l . . . 4 = (le‘𝐾)
74 lvoli2.v . . . 4 𝑉 = (LVols‘𝐾)
7558, 73, 59, 60, 74islvol5 39558 . . 3 ((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑆) ∈ (Base‘𝐾)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
7656, 72, 75syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ∧ (((𝑃 𝑄) 𝑅) 𝑆) = (((𝑝 𝑞) 𝑟) 𝑠))))
7755, 76mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  Latclat 18337  Atomscatm 39242  HLchlt 39329  LVolsclvol 39472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-llines 39477  df-lplanes 39478  df-lvols 39479
This theorem is referenced by:  islvol2aN  39571  4atlem3  39575  2lplnja  39598
  Copyright terms: Public domain W3C validator