MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgint Structured version   Visualization version   GIF version

Theorem sdrgint 20720
Description: The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Assertion
Ref Expression
sdrgint ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubDRing‘𝑅))

Proof of Theorem sdrgint
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑅 ∈ DivRing)
2 simp2 1137 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (SubDRing‘𝑅))
3 issdrg 20704 . . . . . 6 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑠) ∈ DivRing))
43simp2bi 1146 . . . . 5 (𝑠 ∈ (SubDRing‘𝑅) → 𝑠 ∈ (SubRing‘𝑅))
54ssriv 3953 . . . 4 (SubDRing‘𝑅) ⊆ (SubRing‘𝑅)
62, 5sstrdi 3962 . . 3 ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (SubRing‘𝑅))
7 simp3 1138 . . 3 ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅)
8 subrgint 20511 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))
96, 7, 8syl2anc 584 . 2 ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))
10 eqid 2730 . . 3 (𝑅s 𝑆) = (𝑅s 𝑆)
112sselda 3949 . . . 4 (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑠𝑆) → 𝑠 ∈ (SubDRing‘𝑅))
123simp3bi 1147 . . . 4 (𝑠 ∈ (SubDRing‘𝑅) → (𝑅s 𝑠) ∈ DivRing)
1311, 12syl 17 . . 3 (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑠𝑆) → (𝑅s 𝑠) ∈ DivRing)
1410, 1, 6, 7, 13subdrgint 20719 . 2 ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → (𝑅s 𝑆) ∈ DivRing)
15 issdrg 20704 . 2 ( 𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing))
161, 9, 14, 15syl3anbrc 1344 1 ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubDRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wne 2926  wss 3917  c0 4299   cint 4913  cfv 6514  (class class class)co 7390  s cress 17207  SubRingcsubrg 20485  DivRingcdr 20645  SubDRingcsdrg 20702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-subrng 20462  df-subrg 20486  df-drng 20647  df-sdrg 20703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator