![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdrgint | Structured version Visualization version GIF version |
Description: The intersection of a nonempty collection of sub division rings is a sub division ring. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
Ref | Expression |
---|---|
sdrgint | ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubDRing‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1137 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑅 ∈ DivRing) | |
2 | simp2 1138 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (SubDRing‘𝑅)) | |
3 | issdrg 20397 | . . . . . 6 ⊢ (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑠) ∈ DivRing)) | |
4 | 3 | simp2bi 1147 | . . . . 5 ⊢ (𝑠 ∈ (SubDRing‘𝑅) → 𝑠 ∈ (SubRing‘𝑅)) |
5 | 4 | ssriv 3986 | . . . 4 ⊢ (SubDRing‘𝑅) ⊆ (SubRing‘𝑅) |
6 | 2, 5 | sstrdi 3994 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ (SubRing‘𝑅)) |
7 | simp3 1139 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
8 | subrgint 20379 | . . 3 ⊢ ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRing‘𝑅)) | |
9 | 6, 7, 8 | syl2anc 585 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRing‘𝑅)) |
10 | eqid 2733 | . . 3 ⊢ (𝑅 ↾s ∩ 𝑆) = (𝑅 ↾s ∩ 𝑆) | |
11 | 2 | sselda 3982 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑠 ∈ 𝑆) → 𝑠 ∈ (SubDRing‘𝑅)) |
12 | 3 | simp3bi 1148 | . . . 4 ⊢ (𝑠 ∈ (SubDRing‘𝑅) → (𝑅 ↾s 𝑠) ∈ DivRing) |
13 | 11, 12 | syl 17 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑠 ∈ 𝑆) → (𝑅 ↾s 𝑠) ∈ DivRing) |
14 | 10, 1, 6, 7, 13 | subdrgint 20412 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → (𝑅 ↾s ∩ 𝑆) ∈ DivRing) |
15 | issdrg 20397 | . 2 ⊢ (∩ 𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ ∩ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s ∩ 𝑆) ∈ DivRing)) | |
16 | 1, 9, 14, 15 | syl3anbrc 1344 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ⊆ (SubDRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubDRing‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 ≠ wne 2941 ⊆ wss 3948 ∅c0 4322 ∩ cint 4950 ‘cfv 6541 (class class class)co 7406 ↾s cress 17170 DivRingcdr 20308 SubRingcsubrg 20352 SubDRingcsdrg 20395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17142 df-ress 17171 df-plusg 17207 df-mulr 17208 df-0g 17384 df-mgm 18558 df-sgrp 18607 df-mnd 18623 df-grp 18819 df-minusg 18820 df-subg 18998 df-mgp 19983 df-ur 20000 df-ring 20052 df-oppr 20143 df-dvdsr 20164 df-unit 20165 df-invr 20195 df-dvr 20208 df-drng 20310 df-subrg 20354 df-sdrg 20396 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |