Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldgenssp Structured version   Visualization version   GIF version

Theorem fldgenssp 33266
Description: The field generated by a set of elements in a division ring is contained in any sub-division-ring which contains those elements. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
fldgenval.1 𝐵 = (Base‘𝐹)
fldgenval.2 (𝜑𝐹 ∈ DivRing)
fldgenidfld.s (𝜑𝑆 ∈ (SubDRing‘𝐹))
fldgenssp.t (𝜑𝑇𝑆)
Assertion
Ref Expression
fldgenssp (𝜑 → (𝐹 fldGen 𝑇) ⊆ 𝑆)

Proof of Theorem fldgenssp
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fldgenval.1 . . 3 𝐵 = (Base‘𝐹)
2 fldgenval.2 . . 3 (𝜑𝐹 ∈ DivRing)
3 fldgenssp.t . . . 4 (𝜑𝑇𝑆)
4 fldgenidfld.s . . . . . . 7 (𝜑𝑆 ∈ (SubDRing‘𝐹))
5 issdrg 20762 . . . . . . 7 (𝑆 ∈ (SubDRing‘𝐹) ↔ (𝐹 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝐹) ∧ (𝐹s 𝑆) ∈ DivRing))
64, 5sylib 218 . . . . . 6 (𝜑 → (𝐹 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝐹) ∧ (𝐹s 𝑆) ∈ DivRing))
76simp2d 1143 . . . . 5 (𝜑𝑆 ∈ (SubRing‘𝐹))
81subrgss 20545 . . . . 5 (𝑆 ∈ (SubRing‘𝐹) → 𝑆𝐵)
97, 8syl 17 . . . 4 (𝜑𝑆𝐵)
103, 9sstrd 3976 . . 3 (𝜑𝑇𝐵)
111, 2, 10fldgenval 33260 . 2 (𝜑 → (𝐹 fldGen 𝑇) = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑇𝑎})
12 sseq2 3992 . . . 4 (𝑎 = 𝑆 → (𝑇𝑎𝑇𝑆))
1312, 4, 3elrabd 3678 . . 3 (𝜑𝑆 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑇𝑎})
14 intss1 4945 . . 3 (𝑆 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑇𝑎} → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑇𝑎} ⊆ 𝑆)
1513, 14syl 17 . 2 (𝜑 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑇𝑎} ⊆ 𝑆)
1611, 15eqsstrd 4000 1 (𝜑 → (𝐹 fldGen 𝑇) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  {crab 3420  wss 3933   cint 4928  cfv 6542  (class class class)co 7414  Basecbs 17230  s cress 17256  SubRingcsubrg 20542  DivRingcdr 20702  SubDRingcsdrg 20760   fldGen cfldgen 33258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-0g 17462  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-mgp 20111  df-ur 20152  df-ring 20205  df-subrg 20543  df-drng 20704  df-sdrg 20761  df-fldgen 33259
This theorem is referenced by:  fldextrspunlem2  33668  algextdeglem4  33702
  Copyright terms: Public domain W3C validator