Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldgenssp Structured version   Visualization version   GIF version

Theorem fldgenssp 33241
Description: The field generated by a set of elements in a division ring is contained in any sub-division-ring which contains those elements. (Contributed by Thierry Arnoux, 25-Feb-2025.)
Hypotheses
Ref Expression
fldgenval.1 𝐵 = (Base‘𝐹)
fldgenval.2 (𝜑𝐹 ∈ DivRing)
fldgenidfld.s (𝜑𝑆 ∈ (SubDRing‘𝐹))
fldgenssp.t (𝜑𝑇𝑆)
Assertion
Ref Expression
fldgenssp (𝜑 → (𝐹 fldGen 𝑇) ⊆ 𝑆)

Proof of Theorem fldgenssp
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fldgenval.1 . . 3 𝐵 = (Base‘𝐹)
2 fldgenval.2 . . 3 (𝜑𝐹 ∈ DivRing)
3 fldgenssp.t . . . 4 (𝜑𝑇𝑆)
4 fldgenidfld.s . . . . . . 7 (𝜑𝑆 ∈ (SubDRing‘𝐹))
5 issdrg 20673 . . . . . . 7 (𝑆 ∈ (SubDRing‘𝐹) ↔ (𝐹 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝐹) ∧ (𝐹s 𝑆) ∈ DivRing))
64, 5sylib 218 . . . . . 6 (𝜑 → (𝐹 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝐹) ∧ (𝐹s 𝑆) ∈ DivRing))
76simp2d 1143 . . . . 5 (𝜑𝑆 ∈ (SubRing‘𝐹))
81subrgss 20457 . . . . 5 (𝑆 ∈ (SubRing‘𝐹) → 𝑆𝐵)
97, 8syl 17 . . . 4 (𝜑𝑆𝐵)
103, 9sstrd 3954 . . 3 (𝜑𝑇𝐵)
111, 2, 10fldgenval 33235 . 2 (𝜑 → (𝐹 fldGen 𝑇) = {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑇𝑎})
12 sseq2 3970 . . . 4 (𝑎 = 𝑆 → (𝑇𝑎𝑇𝑆))
1312, 4, 3elrabd 3658 . . 3 (𝜑𝑆 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑇𝑎})
14 intss1 4923 . . 3 (𝑆 ∈ {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑇𝑎} → {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑇𝑎} ⊆ 𝑆)
1513, 14syl 17 . 2 (𝜑 {𝑎 ∈ (SubDRing‘𝐹) ∣ 𝑇𝑎} ⊆ 𝑆)
1611, 15eqsstrd 3978 1 (𝜑 → (𝐹 fldGen 𝑇) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {crab 3402  wss 3911   cint 4906  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  SubRingcsubrg 20454  DivRingcdr 20614  SubDRingcsdrg 20671   fldGen cfldgen 33233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mgp 20026  df-ur 20067  df-ring 20120  df-subrg 20455  df-drng 20616  df-sdrg 20672  df-fldgen 33234
This theorem is referenced by:  fldextrspunlem2  33645  algextdeglem4  33683  constrext2chnlem  33713
  Copyright terms: Public domain W3C validator