MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  primefld0cl Structured version   Visualization version   GIF version

Theorem primefld0cl 19585
Description: The prime field contains the neutral element of the division ring. (Contributed by Thierry Arnoux, 22-Aug-2023.)
Hypothesis
Ref Expression
primefld0cl.1 0 = (0g𝑅)
Assertion
Ref Expression
primefld0cl (𝑅 ∈ DivRing → 0 (SubDRing‘𝑅))

Proof of Theorem primefld0cl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 issdrg 19574 . . . . . . 7 (𝑠 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑠 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑠) ∈ DivRing))
21simp2bi 1142 . . . . . 6 (𝑠 ∈ (SubDRing‘𝑅) → 𝑠 ∈ (SubRing‘𝑅))
3 subrgsubg 19541 . . . . . 6 (𝑠 ∈ (SubRing‘𝑅) → 𝑠 ∈ (SubGrp‘𝑅))
42, 3syl 17 . . . . 5 (𝑠 ∈ (SubDRing‘𝑅) → 𝑠 ∈ (SubGrp‘𝑅))
54a1i 11 . . . 4 (𝑅 ∈ DivRing → (𝑠 ∈ (SubDRing‘𝑅) → 𝑠 ∈ (SubGrp‘𝑅)))
65ssrdv 3973 . . 3 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ⊆ (SubGrp‘𝑅))
7 eqid 2821 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
87sdrgid 19575 . . . 4 (𝑅 ∈ DivRing → (Base‘𝑅) ∈ (SubDRing‘𝑅))
98ne0d 4301 . . 3 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ≠ ∅)
10 subgint 18303 . . 3 (((SubDRing‘𝑅) ⊆ (SubGrp‘𝑅) ∧ (SubDRing‘𝑅) ≠ ∅) → (SubDRing‘𝑅) ∈ (SubGrp‘𝑅))
116, 9, 10syl2anc 586 . 2 (𝑅 ∈ DivRing → (SubDRing‘𝑅) ∈ (SubGrp‘𝑅))
12 primefld0cl.1 . . 3 0 = (0g𝑅)
1312subg0cl 18287 . 2 ( (SubDRing‘𝑅) ∈ (SubGrp‘𝑅) → 0 (SubDRing‘𝑅))
1411, 13syl 17 1 (𝑅 ∈ DivRing → 0 (SubDRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wne 3016  wss 3936  c0 4291   cint 4876  cfv 6355  (class class class)co 7156  Basecbs 16483  s cress 16484  0gc0g 16713  SubGrpcsubg 18273  DivRingcdr 19502  SubRingcsubrg 19531  SubDRingcsdrg 19572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-subg 18276  df-mgp 19240  df-ur 19252  df-ring 19299  df-drng 19504  df-subrg 19533  df-sdrg 19573
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator