![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmsubcsetc | Structured version Visualization version GIF version |
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.) |
Ref | Expression |
---|---|
rhmsubcsetc.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
rhmsubcsetc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rhmsubcsetc.b | ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
rhmsubcsetc.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rhmsubcsetc | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmsubcsetc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | rhmsubcsetc.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) | |
3 | 1, 2 | rhmsscmap 20637 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
4 | rhmsubcsetc.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
5 | rhmsubcsetc.c | . . . . 5 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
6 | eqid 2726 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
7 | 5, 1, 6 | estrchomfeqhom 18159 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) |
8 | 5, 1, 6 | estrchomfval 18149 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
9 | 7, 8 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
10 | 3, 4, 9 | 3brtr4d 5185 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘𝐶)) |
11 | 5, 1, 2, 4 | rhmsubcsetclem1 20638 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
12 | 5, 1, 2, 4 | rhmsubcsetclem2 20639 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
13 | 11, 12 | jca 510 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
14 | 13 | ralrimiva 3136 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
15 | eqid 2726 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
16 | eqid 2726 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
17 | eqid 2726 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
18 | 5 | estrccat 18156 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
19 | 1, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
20 | incom 4202 | . . . . 5 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
21 | 2, 20 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
22 | 21, 4 | rhmresfn 20626 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
23 | 15, 16, 17, 19, 22 | issubc2 17855 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘𝐶) ↔ (𝐻 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
24 | 10, 14, 23 | mpbir2and 711 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∩ cin 3946 〈cop 4639 class class class wbr 5153 × cxp 5680 ↾ cres 5684 ‘cfv 6554 (class class class)co 7424 ∈ cmpo 7426 ↑m cmap 8855 Basecbs 17213 Hom chom 17277 compcco 17278 Catccat 17677 Idccid 17678 Homf chomf 17679 ⊆cat cssc 17823 Subcatcsubc 17825 ExtStrCatcestrc 18145 Ringcrg 20216 RingHom crh 20451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-hom 17290 df-cco 17291 df-0g 17456 df-cat 17681 df-cid 17682 df-homf 17683 df-ssc 17826 df-resc 17827 df-subc 17828 df-estrc 18146 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-mhm 18773 df-grp 18931 df-ghm 19207 df-mgp 20118 df-ur 20165 df-ring 20218 df-rhm 20454 df-ringc 20624 |
This theorem is referenced by: ringccat 20641 ringcid 20642 funcringcsetc 20652 |
Copyright terms: Public domain | W3C validator |