MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmsubcsetc Structured version   Visualization version   GIF version

Theorem rhmsubcsetc 20640
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.)
Hypotheses
Ref Expression
rhmsubcsetc.c 𝐶 = (ExtStrCat‘𝑈)
rhmsubcsetc.u (𝜑𝑈𝑉)
rhmsubcsetc.b (𝜑𝐵 = (Ring ∩ 𝑈))
rhmsubcsetc.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rhmsubcsetc (𝜑𝐻 ∈ (Subcat‘𝐶))

Proof of Theorem rhmsubcsetc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmsubcsetc.u . . . 4 (𝜑𝑈𝑉)
2 rhmsubcsetc.b . . . 4 (𝜑𝐵 = (Ring ∩ 𝑈))
31, 2rhmsscmap 20637 . . 3 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
4 rhmsubcsetc.h . . 3 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
5 rhmsubcsetc.c . . . . 5 𝐶 = (ExtStrCat‘𝑈)
6 eqid 2726 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
75, 1, 6estrchomfeqhom 18159 . . . 4 (𝜑 → (Homf𝐶) = (Hom ‘𝐶))
85, 1, 6estrchomfval 18149 . . . 4 (𝜑 → (Hom ‘𝐶) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
97, 8eqtrd 2766 . . 3 (𝜑 → (Homf𝐶) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
103, 4, 93brtr4d 5185 . 2 (𝜑𝐻cat (Homf𝐶))
115, 1, 2, 4rhmsubcsetclem1 20638 . . . 4 ((𝜑𝑥𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥))
125, 1, 2, 4rhmsubcsetclem2 20639 . . . 4 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
1311, 12jca 510 . . 3 ((𝜑𝑥𝐵) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)))
1413ralrimiva 3136 . 2 (𝜑 → ∀𝑥𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)))
15 eqid 2726 . . 3 (Homf𝐶) = (Homf𝐶)
16 eqid 2726 . . 3 (Id‘𝐶) = (Id‘𝐶)
17 eqid 2726 . . 3 (comp‘𝐶) = (comp‘𝐶)
185estrccat 18156 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
191, 18syl 17 . . 3 (𝜑𝐶 ∈ Cat)
20 incom 4202 . . . . 5 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
212, 20eqtrdi 2782 . . . 4 (𝜑𝐵 = (𝑈 ∩ Ring))
2221, 4rhmresfn 20626 . . 3 (𝜑𝐻 Fn (𝐵 × 𝐵))
2315, 16, 17, 19, 22issubc2 17855 . 2 (𝜑 → (𝐻 ∈ (Subcat‘𝐶) ↔ (𝐻cat (Homf𝐶) ∧ ∀𝑥𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)))))
2410, 14, 23mpbir2and 711 1 (𝜑𝐻 ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  cin 3946  cop 4639   class class class wbr 5153   × cxp 5680  cres 5684  cfv 6554  (class class class)co 7424  cmpo 7426  m cmap 8855  Basecbs 17213  Hom chom 17277  compcco 17278  Catccat 17677  Idccid 17678  Homf chomf 17679  cat cssc 17823  Subcatcsubc 17825  ExtStrCatcestrc 18145  Ringcrg 20216   RingHom crh 20451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-hom 17290  df-cco 17291  df-0g 17456  df-cat 17681  df-cid 17682  df-homf 17683  df-ssc 17826  df-resc 17827  df-subc 17828  df-estrc 18146  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-grp 18931  df-ghm 19207  df-mgp 20118  df-ur 20165  df-ring 20218  df-rhm 20454  df-ringc 20624
This theorem is referenced by:  ringccat  20641  ringcid  20642  funcringcsetc  20652
  Copyright terms: Public domain W3C validator