Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsubcsetc Structured version   Visualization version   GIF version

Theorem rhmsubcsetc 45144
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.)
Hypotheses
Ref Expression
rhmsubcsetc.c 𝐶 = (ExtStrCat‘𝑈)
rhmsubcsetc.u (𝜑𝑈𝑉)
rhmsubcsetc.b (𝜑𝐵 = (Ring ∩ 𝑈))
rhmsubcsetc.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rhmsubcsetc (𝜑𝐻 ∈ (Subcat‘𝐶))

Proof of Theorem rhmsubcsetc
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmsubcsetc.u . . . 4 (𝜑𝑈𝑉)
2 rhmsubcsetc.b . . . 4 (𝜑𝐵 = (Ring ∩ 𝑈))
31, 2rhmsscmap 45141 . . 3 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
4 rhmsubcsetc.h . . 3 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
5 rhmsubcsetc.c . . . . 5 𝐶 = (ExtStrCat‘𝑈)
6 eqid 2738 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
75, 1, 6estrchomfeqhom 17504 . . . 4 (𝜑 → (Homf𝐶) = (Hom ‘𝐶))
85, 1, 6estrchomfval 17494 . . . 4 (𝜑 → (Hom ‘𝐶) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
97, 8eqtrd 2773 . . 3 (𝜑 → (Homf𝐶) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
103, 4, 93brtr4d 5062 . 2 (𝜑𝐻cat (Homf𝐶))
115, 1, 2, 4rhmsubcsetclem1 45142 . . . 4 ((𝜑𝑥𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥))
125, 1, 2, 4rhmsubcsetclem2 45143 . . . 4 ((𝜑𝑥𝐵) → ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))
1311, 12jca 515 . . 3 ((𝜑𝑥𝐵) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)))
1413ralrimiva 3096 . 2 (𝜑 → ∀𝑥𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)))
15 eqid 2738 . . 3 (Homf𝐶) = (Homf𝐶)
16 eqid 2738 . . 3 (Id‘𝐶) = (Id‘𝐶)
17 eqid 2738 . . 3 (comp‘𝐶) = (comp‘𝐶)
185estrccat 17501 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
191, 18syl 17 . . 3 (𝜑𝐶 ∈ Cat)
20 incom 4091 . . . . 5 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
212, 20eqtrdi 2789 . . . 4 (𝜑𝐵 = (𝑈 ∩ Ring))
2221, 4rhmresfn 45130 . . 3 (𝜑𝐻 Fn (𝐵 × 𝐵))
2315, 16, 17, 19, 22issubc2 17213 . 2 (𝜑 → (𝐻 ∈ (Subcat‘𝐶) ↔ (𝐻cat (Homf𝐶) ∧ ∀𝑥𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)))))
2410, 14, 23mpbir2and 713 1 (𝜑𝐻 ∈ (Subcat‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wral 3053  cin 3842  cop 4522   class class class wbr 5030   × cxp 5523  cres 5527  cfv 6339  (class class class)co 7172  cmpo 7174  m cmap 8439  Basecbs 16588  Hom chom 16681  compcco 16682  Catccat 17040  Idccid 17041  Homf chomf 17042  cat cssc 17184  Subcatcsubc 17186  ExtStrCatcestrc 17490  Ringcrg 19418   RingHom crh 19588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-cnex 10673  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-om 7602  df-1st 7716  df-2nd 7717  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-1o 8133  df-er 8322  df-map 8441  df-pm 8442  df-ixp 8510  df-en 8558  df-dom 8559  df-sdom 8560  df-fin 8561  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-nn 11719  df-2 11781  df-3 11782  df-4 11783  df-5 11784  df-6 11785  df-7 11786  df-8 11787  df-9 11788  df-n0 11979  df-z 12065  df-dec 12182  df-uz 12327  df-fz 12984  df-struct 16590  df-ndx 16591  df-slot 16592  df-base 16594  df-sets 16595  df-ress 16596  df-plusg 16683  df-hom 16694  df-cco 16695  df-0g 16820  df-cat 17044  df-cid 17045  df-homf 17046  df-ssc 17187  df-resc 17188  df-subc 17189  df-estrc 17491  df-mgm 17970  df-sgrp 18019  df-mnd 18030  df-mhm 18074  df-grp 18224  df-ghm 18476  df-mgp 19361  df-ur 19373  df-ring 19420  df-rnghom 19591  df-ringc 45126
This theorem is referenced by:  ringccat  45145  ringcid  45146  funcringcsetc  45156
  Copyright terms: Public domain W3C validator