Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcsetc | Structured version Visualization version GIF version |
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020.) |
Ref | Expression |
---|---|
rhmsubcsetc.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
rhmsubcsetc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rhmsubcsetc.b | ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
rhmsubcsetc.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rhmsubcsetc | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmsubcsetc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | rhmsubcsetc.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) | |
3 | 1, 2 | rhmsscmap 45141 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
4 | rhmsubcsetc.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
5 | rhmsubcsetc.c | . . . . 5 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
6 | eqid 2738 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
7 | 5, 1, 6 | estrchomfeqhom 17504 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) |
8 | 5, 1, 6 | estrchomfval 17494 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
9 | 7, 8 | eqtrd 2773 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
10 | 3, 4, 9 | 3brtr4d 5062 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘𝐶)) |
11 | 5, 1, 2, 4 | rhmsubcsetclem1 45142 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
12 | 5, 1, 2, 4 | rhmsubcsetclem2 45143 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
13 | 11, 12 | jca 515 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
14 | 13 | ralrimiva 3096 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
15 | eqid 2738 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
16 | eqid 2738 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
17 | eqid 2738 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
18 | 5 | estrccat 17501 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
19 | 1, 18 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
20 | incom 4091 | . . . . 5 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
21 | 2, 20 | eqtrdi 2789 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
22 | 21, 4 | rhmresfn 45130 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
23 | 15, 16, 17, 19, 22 | issubc2 17213 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘𝐶) ↔ (𝐻 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
24 | 10, 14, 23 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 ∩ cin 3842 〈cop 4522 class class class wbr 5030 × cxp 5523 ↾ cres 5527 ‘cfv 6339 (class class class)co 7172 ∈ cmpo 7174 ↑m cmap 8439 Basecbs 16588 Hom chom 16681 compcco 16682 Catccat 17040 Idccid 17041 Homf chomf 17042 ⊆cat cssc 17184 Subcatcsubc 17186 ExtStrCatcestrc 17490 Ringcrg 19418 RingHom crh 19588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-1st 7716 df-2nd 7717 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-1o 8133 df-er 8322 df-map 8441 df-pm 8442 df-ixp 8510 df-en 8558 df-dom 8559 df-sdom 8560 df-fin 8561 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-nn 11719 df-2 11781 df-3 11782 df-4 11783 df-5 11784 df-6 11785 df-7 11786 df-8 11787 df-9 11788 df-n0 11979 df-z 12065 df-dec 12182 df-uz 12327 df-fz 12984 df-struct 16590 df-ndx 16591 df-slot 16592 df-base 16594 df-sets 16595 df-ress 16596 df-plusg 16683 df-hom 16694 df-cco 16695 df-0g 16820 df-cat 17044 df-cid 17045 df-homf 17046 df-ssc 17187 df-resc 17188 df-subc 17189 df-estrc 17491 df-mgm 17970 df-sgrp 18019 df-mnd 18030 df-mhm 18074 df-grp 18224 df-ghm 18476 df-mgp 19361 df-ur 19373 df-ring 19420 df-rnghom 19591 df-ringc 45126 |
This theorem is referenced by: ringccat 45145 ringcid 45146 funcringcsetc 45156 |
Copyright terms: Public domain | W3C validator |