![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rhmsubcrngc | Structured version Visualization version GIF version |
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of non-unital rings. (Contributed by AV, 12-Mar-2020.) |
Ref | Expression |
---|---|
rhmsubcrngc.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rhmsubcrngc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rhmsubcrngc.b | ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
rhmsubcrngc.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rhmsubcrngc | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmsubcrngc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | rhmsubcrngc.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) | |
3 | eqid 2778 | . . . . . . 7 ⊢ (RngCat‘𝑈) = (RngCat‘𝑈) | |
4 | eqid 2778 | . . . . . . 7 ⊢ (Base‘(RngCat‘𝑈)) = (Base‘(RngCat‘𝑈)) | |
5 | 3, 4, 1 | rngcbas 43606 | . . . . . 6 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = (𝑈 ∩ Rng)) |
6 | incom 4066 | . . . . . 6 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
7 | 5, 6 | syl6eq 2830 | . . . . 5 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = (Rng ∩ 𝑈)) |
8 | 1, 2, 7 | rhmsscrnghm 43667 | . . . 4 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ⊆cat ( RngHomo ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))))) |
9 | rhmsubcrngc.c | . . . . . . . 8 ⊢ 𝐶 = (RngCat‘𝑈) | |
10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐶 = (RngCat‘𝑈)) |
11 | 10 | fveq2d 6503 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐶) = (Base‘(RngCat‘𝑈))) |
12 | 11 | sqxpeqd 5439 | . . . . 5 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈)))) |
13 | 12 | reseq2d 5695 | . . . 4 ⊢ (𝜑 → ( RngHomo ↾ ((Base‘𝐶) × (Base‘𝐶))) = ( RngHomo ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))))) |
14 | 8, 13 | breqtrrd 4957 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ⊆cat ( RngHomo ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
15 | rhmsubcrngc.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
16 | eqid 2778 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
17 | 9, 16, 1 | rngchomfeqhom 43610 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) |
18 | eqid 2778 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
19 | 9, 16, 1, 18 | rngchomfval 43607 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHomo ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
20 | 17, 19 | eqtrd 2814 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = ( RngHomo ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
21 | 14, 15, 20 | 3brtr4d 4961 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘𝐶)) |
22 | 9, 1, 2, 15 | rhmsubcrngclem1 43668 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
23 | 9, 1, 2, 15 | rhmsubcrngclem2 43669 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
24 | 22, 23 | jca 504 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
25 | 24 | ralrimiva 3132 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
26 | eqid 2778 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
27 | eqid 2778 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
28 | eqid 2778 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
29 | 9 | rngccat 43619 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
30 | 1, 29 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
31 | incom 4066 | . . . . 5 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
32 | 2, 31 | syl6eq 2830 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
33 | 32, 15 | rhmresfn 43650 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
34 | 26, 27, 28, 30, 33 | issubc2 16964 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘𝐶) ↔ (𝐻 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
35 | 21, 25, 34 | mpbir2and 700 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∀wral 3088 ∩ cin 3828 〈cop 4447 class class class wbr 4929 × cxp 5405 ↾ cres 5409 ‘cfv 6188 (class class class)co 6976 Basecbs 16339 Hom chom 16432 compcco 16433 Catccat 16793 Idccid 16794 Homf chomf 16795 ⊆cat cssc 16935 Subcatcsubc 16937 Ringcrg 19020 RingHom crh 19187 Rngcrng 43515 RngHomo crngh 43526 RngCatcrngc 43598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-map 8208 df-pm 8209 df-ixp 8260 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-z 11794 df-dec 11912 df-uz 12059 df-fz 12709 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-hom 16445 df-cco 16446 df-0g 16571 df-cat 16797 df-cid 16798 df-homf 16799 df-ssc 16938 df-resc 16939 df-subc 16940 df-estrc 17231 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-mhm 17803 df-grp 17894 df-minusg 17895 df-ghm 18127 df-cmn 18668 df-abl 18669 df-mgp 18963 df-ur 18975 df-ring 19022 df-rnghom 19190 df-mgmhm 43420 df-rng0 43516 df-rnghomo 43528 df-rngc 43600 df-ringc 43646 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |