| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmsubcrngc | Structured version Visualization version GIF version | ||
| Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of non-unital rings. (Contributed by AV, 12-Mar-2020.) |
| Ref | Expression |
|---|---|
| rhmsubcrngc.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| rhmsubcrngc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rhmsubcrngc.b | ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
| rhmsubcrngc.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rhmsubcrngc | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcrngc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 2 | rhmsubcrngc.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) | |
| 3 | eqid 2731 | . . . . . . 7 ⊢ (RngCat‘𝑈) = (RngCat‘𝑈) | |
| 4 | eqid 2731 | . . . . . . 7 ⊢ (Base‘(RngCat‘𝑈)) = (Base‘(RngCat‘𝑈)) | |
| 5 | 3, 4, 1 | rngcbas 20536 | . . . . . 6 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = (𝑈 ∩ Rng)) |
| 6 | incom 4156 | . . . . . 6 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
| 7 | 5, 6 | eqtrdi 2782 | . . . . 5 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = (Rng ∩ 𝑈)) |
| 8 | 1, 2, 7 | rhmsscrnghm 20580 | . . . 4 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ⊆cat ( RngHom ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))))) |
| 9 | rhmsubcrngc.c | . . . . . . . 8 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐶 = (RngCat‘𝑈)) |
| 11 | 10 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐶) = (Base‘(RngCat‘𝑈))) |
| 12 | 11 | sqxpeqd 5646 | . . . . 5 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈)))) |
| 13 | 12 | reseq2d 5927 | . . . 4 ⊢ (𝜑 → ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶))) = ( RngHom ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))))) |
| 14 | 8, 13 | breqtrrd 5117 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ⊆cat ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 15 | rhmsubcrngc.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
| 16 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 17 | 9, 16, 1 | rngchomfeqhom 20540 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) |
| 18 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 19 | 9, 16, 1, 18 | rngchomfval 20537 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 20 | 17, 19 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 21 | 14, 15, 20 | 3brtr4d 5121 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘𝐶)) |
| 22 | 9, 1, 2, 15 | rhmsubcrngclem1 20581 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| 23 | 9, 1, 2, 15 | rhmsubcrngclem2 20582 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 24 | 22, 23 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 25 | 24 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 26 | eqid 2731 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 27 | eqid 2731 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 28 | eqid 2731 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 29 | 9 | rngccat 20549 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 30 | 1, 29 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 31 | incom 4156 | . . . . 5 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
| 32 | 2, 31 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
| 33 | 32, 15 | rhmresfn 20563 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| 34 | 26, 27, 28, 30, 33 | issubc2 17743 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘𝐶) ↔ (𝐻 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
| 35 | 21, 25, 34 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ cin 3896 〈cop 4579 class class class wbr 5089 × cxp 5612 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Hom chom 17172 compcco 17173 Catccat 17570 Idccid 17571 Homf chomf 17572 ⊆cat cssc 17714 Subcatcsubc 17716 Rngcrng 20070 Ringcrg 20151 RngHom crnghm 20352 RingHom crh 20387 RngCatcrngc 20531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-hom 17185 df-cco 17186 df-0g 17345 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-resc 17718 df-subc 17719 df-estrc 18029 df-mgm 18548 df-mgmhm 18600 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-ghm 19125 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-rnghm 20354 df-rhm 20390 df-rngc 20532 df-ringc 20561 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |