| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmsubcrngc | Structured version Visualization version GIF version | ||
| Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of non-unital rings. (Contributed by AV, 12-Mar-2020.) |
| Ref | Expression |
|---|---|
| rhmsubcrngc.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| rhmsubcrngc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rhmsubcrngc.b | ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
| rhmsubcrngc.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rhmsubcrngc | ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcrngc.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 2 | rhmsubcrngc.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (RngCat‘𝑈) = (RngCat‘𝑈) | |
| 4 | eqid 2729 | . . . . . . 7 ⊢ (Base‘(RngCat‘𝑈)) = (Base‘(RngCat‘𝑈)) | |
| 5 | 3, 4, 1 | rngcbas 20506 | . . . . . 6 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = (𝑈 ∩ Rng)) |
| 6 | incom 4160 | . . . . . 6 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
| 7 | 5, 6 | eqtrdi 2780 | . . . . 5 ⊢ (𝜑 → (Base‘(RngCat‘𝑈)) = (Rng ∩ 𝑈)) |
| 8 | 1, 2, 7 | rhmsscrnghm 20550 | . . . 4 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ⊆cat ( RngHom ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))))) |
| 9 | rhmsubcrngc.c | . . . . . . . 8 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 10 | 9 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐶 = (RngCat‘𝑈)) |
| 11 | 10 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (Base‘𝐶) = (Base‘(RngCat‘𝑈))) |
| 12 | 11 | sqxpeqd 5651 | . . . . 5 ⊢ (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) = ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈)))) |
| 13 | 12 | reseq2d 5930 | . . . 4 ⊢ (𝜑 → ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶))) = ( RngHom ↾ ((Base‘(RngCat‘𝑈)) × (Base‘(RngCat‘𝑈))))) |
| 14 | 8, 13 | breqtrrd 5120 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ⊆cat ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 15 | rhmsubcrngc.h | . . 3 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
| 16 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 17 | 9, 16, 1 | rngchomfeqhom 20510 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Hom ‘𝐶)) |
| 18 | eqid 2729 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 19 | 9, 16, 1, 18 | rngchomfval 20507 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 20 | 17, 19 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 21 | 14, 15, 20 | 3brtr4d 5124 | . 2 ⊢ (𝜑 → 𝐻 ⊆cat (Homf ‘𝐶)) |
| 22 | 9, 1, 2, 15 | rhmsubcrngclem1 20551 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥)) |
| 23 | 9, 1, 2, 15 | rhmsubcrngclem2 20552 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 24 | 22, 23 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 25 | 24 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
| 26 | eqid 2729 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 27 | eqid 2729 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 28 | eqid 2729 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 29 | 9 | rngccat 20519 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
| 30 | 1, 29 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 31 | incom 4160 | . . . . 5 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
| 32 | 2, 31 | eqtrdi 2780 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
| 33 | 32, 15 | rhmresfn 20533 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| 34 | 26, 27, 28, 30, 33 | issubc2 17743 | . 2 ⊢ (𝜑 → (𝐻 ∈ (Subcat‘𝐶) ↔ (𝐻 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝐵 (((Id‘𝐶)‘𝑥) ∈ (𝑥𝐻𝑥) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐻𝑧))))) |
| 35 | 21, 25, 34 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻 ∈ (Subcat‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3902 〈cop 4583 class class class wbr 5092 × cxp 5617 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Hom chom 17172 compcco 17173 Catccat 17570 Idccid 17571 Homf chomf 17572 ⊆cat cssc 17714 Subcatcsubc 17716 Rngcrng 20037 Ringcrg 20118 RngHom crnghm 20319 RingHom crh 20354 RngCatcrngc 20501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-hom 17185 df-cco 17186 df-0g 17345 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-resc 17718 df-subc 17719 df-estrc 18029 df-mgm 18514 df-mgmhm 18566 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-grp 18815 df-minusg 18816 df-ghm 19092 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-rnghm 20321 df-rhm 20357 df-rngc 20502 df-ringc 20531 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |