![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leneltd | Structured version Visualization version GIF version |
Description: 'Less than or equal to' and 'not equals' implies 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
leltned.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
leneltd.4 | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Ref | Expression |
---|---|
leneltd | ⊢ (𝜑 → 𝐴 < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leneltd.4 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐴) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | leltned.3 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
5 | 2, 3, 4 | leltned 10592 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) |
6 | 1, 5 | mpbird 249 | 1 ⊢ (𝜑 → 𝐴 < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 ≠ wne 2962 class class class wbr 4926 ℝcr 10333 < clt 10473 ≤ cle 10474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-resscn 10391 ax-pre-lttri 10408 ax-pre-lttrn 10409 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-br 4927 df-opab 4989 df-mpt 5006 df-id 5309 df-po 5323 df-so 5324 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 |
This theorem is referenced by: flltnz 12995 seqf1olem1 13223 isprm5 15906 fvmptnn04if 21177 zcld 23140 evth 23282 pmltpclem2 23769 abelthlem2 24739 logcj 24906 argimgt0 24912 dvloglem 24948 logf1o2 24950 asinneg 25181 lgslem1 25591 lgseisen 25673 dchrisum0flblem1 25802 ttgcontlem1 26390 axcontlem8 26476 unbdqndv2lem2 33402 fzdifsuc2 41036 xralrple2 41081 xralrple3 41101 eliccelioc 41258 limcresiooub 41384 limcresioolb 41385 icccncfext 41630 cncfiooiccre 41638 dvbdfbdioolem2 41674 dvnxpaek 41687 volioc 41717 itgioocnicc 41722 iblcncfioo 41723 dirkercncflem1 41849 fourierdlem24 41877 fourierdlem25 41878 fourierdlem32 41885 fourierdlem33 41886 fourierdlem41 41894 fourierdlem42 41895 fourierdlem46 41898 fourierdlem48 41900 fourierdlem49 41901 fourierdlem51 41903 fourierdlem64 41916 fourierdlem65 41917 fourierdlem73 41925 fourierdlem76 41928 fourierdlem79 41931 fourierdlem81 41933 fourierdlem82 41934 fourierdlem89 41941 fourierdlem91 41943 fourierdlem102 41954 fourierdlem114 41966 fourierswlem 41976 fouriersw 41977 etransclem15 41995 etransclem24 42004 etransclem25 42005 etransclem35 42015 iundjiun 42203 hoidmvlelem2 42339 |
Copyright terms: Public domain | W3C validator |