Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveqmpt2 Structured version   Visualization version   GIF version

Theorem climfveqmpt2 44709
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climfveqmpt2.k 𝑘𝜑
climfveqmpt2.m (𝜑𝑀 ∈ ℤ)
climfveqmpt2.z 𝑍 = (ℤ𝑀)
climfveqmpt2.a (𝜑𝐴𝑉)
climfveqmpt2.c (𝜑𝐵𝑊)
climfveqmpt2.s (𝜑𝑍𝐴)
climfveqmpt2.i (𝜑𝑍𝐵)
climfveqmpt2.b ((𝜑𝑘𝑍) → 𝐶𝑈)
Assertion
Ref Expression
climfveqmpt2 (𝜑 → ( ⇝ ‘(𝑘𝐴𝐶)) = ( ⇝ ‘(𝑘𝐵𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝑈(𝑘)   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climfveqmpt2
StepHypRef Expression
1 climfveqmpt2.k . 2 𝑘𝜑
2 nfmpt1 5257 . 2 𝑘(𝑘𝐴𝐶)
3 nfmpt1 5257 . 2 𝑘(𝑘𝐵𝐶)
4 climfveqmpt2.z . 2 𝑍 = (ℤ𝑀)
5 climfveqmpt2.a . . 3 (𝜑𝐴𝑉)
65mptexd 7229 . 2 (𝜑 → (𝑘𝐴𝐶) ∈ V)
7 climfveqmpt2.c . . 3 (𝜑𝐵𝑊)
87mptexd 7229 . 2 (𝜑 → (𝑘𝐵𝐶) ∈ V)
9 climfveqmpt2.m . 2 (𝜑𝑀 ∈ ℤ)
10 climfveqmpt2.s . . . . 5 (𝜑𝑍𝐴)
1110sselda 3983 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝐴)
12 climfveqmpt2.b . . . 4 ((𝜑𝑘𝑍) → 𝐶𝑈)
13 eqid 2731 . . . . 5 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
1413fvmpt2 7010 . . . 4 ((𝑘𝐴𝐶𝑈) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
1511, 12, 14syl2anc 583 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
16 climfveqmpt2.i . . . . 5 (𝜑𝑍𝐵)
1716sselda 3983 . . . 4 ((𝜑𝑘𝑍) → 𝑘𝐵)
18 eqid 2731 . . . . 5 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
1918fvmpt2 7010 . . . 4 ((𝑘𝐵𝐶𝑈) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
2017, 12, 19syl2anc 583 . . 3 ((𝜑𝑘𝑍) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
2115, 20eqtr4d 2774 . 2 ((𝜑𝑘𝑍) → ((𝑘𝐴𝐶)‘𝑘) = ((𝑘𝐵𝐶)‘𝑘))
221, 2, 3, 4, 6, 8, 9, 21climfveqf 44696 1 (𝜑 → ( ⇝ ‘(𝑘𝐴𝐶)) = ( ⇝ ‘(𝑘𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1784  wcel 2105  Vcvv 3473  wss 3949  cmpt 5232  cfv 6544  cz 12563  cuz 12827  cli 15433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-sup 9440  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-seq 13972  df-exp 14033  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator