Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem5 Structured version   Visualization version   GIF version

Theorem dia2dimlem5 41177
Description: Lemma for dia2dim 41186. The sum of vectors 𝐺 and 𝐷 belongs to the sum of the subspaces generated by them. Thus, 𝐹 = (𝐺𝐷) belongs to the subspace sum. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem5.l = (le‘𝐾)
dia2dimlem5.j = (join‘𝐾)
dia2dimlem5.m = (meet‘𝐾)
dia2dimlem5.a 𝐴 = (Atoms‘𝐾)
dia2dimlem5.h 𝐻 = (LHyp‘𝐾)
dia2dimlem5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem5.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem5.y 𝑌 = ((DVecA‘𝐾)‘𝑊)
dia2dimlem5.s 𝑆 = (LSubSp‘𝑌)
dia2dimlem5.pl = (LSSum‘𝑌)
dia2dimlem5.n 𝑁 = (LSpan‘𝑌)
dia2dimlem5.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
dia2dimlem5.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem5.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem5.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem5.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem5.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem5.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem5.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem5.uv (𝜑𝑈𝑉)
dia2dimlem5.ru (𝜑 → (𝑅𝐹) ≠ 𝑈)
dia2dimlem5.rv (𝜑 → (𝑅𝐹) ≠ 𝑉)
dia2dimlem5.g (𝜑𝐺𝑇)
dia2dimlem5.gv (𝜑 → (𝐺𝑃) = 𝑄)
dia2dimlem5.d (𝜑𝐷𝑇)
dia2dimlem5.dv (𝜑 → (𝐷𝑄) = (𝐹𝑃))
Assertion
Ref Expression
dia2dimlem5 (𝜑𝐹 ∈ ((𝐼𝑈) (𝐼𝑉)))

Proof of Theorem dia2dimlem5
StepHypRef Expression
1 dia2dimlem5.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dia2dimlem5.d . . . . 5 (𝜑𝐷𝑇)
3 dia2dimlem5.g . . . . 5 (𝜑𝐺𝑇)
4 dia2dimlem5.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 dia2dimlem5.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dia2dimlem5.y . . . . . 6 𝑌 = ((DVecA‘𝐾)‘𝑊)
7 eqid 2731 . . . . . 6 (+g𝑌) = (+g𝑌)
84, 5, 6, 7dvavadd 41124 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐷𝑇𝐺𝑇)) → (𝐷(+g𝑌)𝐺) = (𝐷𝐺))
91, 2, 3, 8syl12anc 836 . . . 4 (𝜑 → (𝐷(+g𝑌)𝐺) = (𝐷𝐺))
10 dia2dimlem5.l . . . . 5 = (le‘𝐾)
11 dia2dimlem5.a . . . . 5 𝐴 = (Atoms‘𝐾)
12 dia2dimlem5.p . . . . 5 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
13 dia2dimlem5.f . . . . . 6 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
1413simpld 494 . . . . 5 (𝜑𝐹𝑇)
15 dia2dimlem5.gv . . . . 5 (𝜑 → (𝐺𝑃) = 𝑄)
16 dia2dimlem5.dv . . . . 5 (𝜑 → (𝐷𝑄) = (𝐹𝑃))
1710, 11, 4, 5, 1, 12, 14, 3, 15, 2, 16dia2dimlem4 41176 . . . 4 (𝜑 → (𝐷𝐺) = 𝐹)
189, 17eqtr2d 2767 . . 3 (𝜑𝐹 = (𝐷(+g𝑌)𝐺))
194, 6dvalvec 41135 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑌 ∈ LVec)
20 lveclmod 21040 . . . . . . 7 (𝑌 ∈ LVec → 𝑌 ∈ LMod)
211, 19, 203syl 18 . . . . . 6 (𝜑𝑌 ∈ LMod)
22 dia2dimlem5.s . . . . . . 7 𝑆 = (LSubSp‘𝑌)
2322lsssssubg 20891 . . . . . 6 (𝑌 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑌))
2421, 23syl 17 . . . . 5 (𝜑𝑆 ⊆ (SubGrp‘𝑌))
25 dia2dimlem5.v . . . . . . . 8 (𝜑 → (𝑉𝐴𝑉 𝑊))
2625simpld 494 . . . . . . 7 (𝜑𝑉𝐴)
27 eqid 2731 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2827, 11atbase 39398 . . . . . . 7 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
2926, 28syl 17 . . . . . 6 (𝜑𝑉 ∈ (Base‘𝐾))
3025simprd 495 . . . . . 6 (𝜑𝑉 𝑊)
31 dia2dimlem5.i . . . . . . 7 𝐼 = ((DIsoA‘𝐾)‘𝑊)
3227, 10, 4, 6, 31, 22dialss 41155 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑉 𝑊)) → (𝐼𝑉) ∈ 𝑆)
331, 29, 30, 32syl12anc 836 . . . . 5 (𝜑 → (𝐼𝑉) ∈ 𝑆)
3424, 33sseldd 3930 . . . 4 (𝜑 → (𝐼𝑉) ∈ (SubGrp‘𝑌))
35 dia2dimlem5.u . . . . . . . 8 (𝜑 → (𝑈𝐴𝑈 𝑊))
3635simpld 494 . . . . . . 7 (𝜑𝑈𝐴)
3727, 11atbase 39398 . . . . . . 7 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
3836, 37syl 17 . . . . . 6 (𝜑𝑈 ∈ (Base‘𝐾))
3935simprd 495 . . . . . 6 (𝜑𝑈 𝑊)
4027, 10, 4, 6, 31, 22dialss 41155 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈 ∈ (Base‘𝐾) ∧ 𝑈 𝑊)) → (𝐼𝑈) ∈ 𝑆)
411, 38, 39, 40syl12anc 836 . . . . 5 (𝜑 → (𝐼𝑈) ∈ 𝑆)
4224, 41sseldd 3930 . . . 4 (𝜑 → (𝐼𝑈) ∈ (SubGrp‘𝑌))
43 dia2dimlem5.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
44 dia2dimlem5.n . . . . . . . 8 𝑁 = (LSpan‘𝑌)
454, 5, 43, 6, 31, 44dia1dim2 41171 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → (𝐼‘(𝑅𝐷)) = (𝑁‘{𝐷}))
461, 2, 45syl2anc 584 . . . . . 6 (𝜑 → (𝐼‘(𝑅𝐷)) = (𝑁‘{𝐷}))
47 dia2dimlem5.j . . . . . . . . . 10 = (join‘𝐾)
48 dia2dimlem5.m . . . . . . . . . 10 = (meet‘𝐾)
49 dia2dimlem5.q . . . . . . . . . 10 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
50 dia2dimlem5.rf . . . . . . . . . 10 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
51 dia2dimlem5.uv . . . . . . . . . 10 (𝜑𝑈𝑉)
52 dia2dimlem5.ru . . . . . . . . . 10 (𝜑 → (𝑅𝐹) ≠ 𝑈)
53 dia2dimlem5.rv . . . . . . . . . 10 (𝜑 → (𝑅𝐹) ≠ 𝑉)
5410, 47, 48, 11, 4, 5, 43, 49, 1, 35, 25, 12, 13, 50, 51, 52, 53, 2, 16dia2dimlem3 41175 . . . . . . . . 9 (𝜑 → (𝑅𝐷) = 𝑉)
5554fveq2d 6826 . . . . . . . 8 (𝜑 → (𝐼‘(𝑅𝐷)) = (𝐼𝑉))
56 eqss 3945 . . . . . . . 8 ((𝐼‘(𝑅𝐷)) = (𝐼𝑉) ↔ ((𝐼‘(𝑅𝐷)) ⊆ (𝐼𝑉) ∧ (𝐼𝑉) ⊆ (𝐼‘(𝑅𝐷))))
5755, 56sylib 218 . . . . . . 7 (𝜑 → ((𝐼‘(𝑅𝐷)) ⊆ (𝐼𝑉) ∧ (𝐼𝑉) ⊆ (𝐼‘(𝑅𝐷))))
5857simpld 494 . . . . . 6 (𝜑 → (𝐼‘(𝑅𝐷)) ⊆ (𝐼𝑉))
5946, 58eqsstrrd 3965 . . . . 5 (𝜑 → (𝑁‘{𝐷}) ⊆ (𝐼𝑉))
60 eqid 2731 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
614, 5, 6, 60dvavbase 41122 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑌) = 𝑇)
621, 61syl 17 . . . . . . 7 (𝜑 → (Base‘𝑌) = 𝑇)
632, 62eleqtrrd 2834 . . . . . 6 (𝜑𝐷 ∈ (Base‘𝑌))
6460, 22, 44, 21, 33, 63ellspsn5b 20928 . . . . 5 (𝜑 → (𝐷 ∈ (𝐼𝑉) ↔ (𝑁‘{𝐷}) ⊆ (𝐼𝑉)))
6559, 64mpbird 257 . . . 4 (𝜑𝐷 ∈ (𝐼𝑉))
664, 5, 43, 6, 31, 44dia1dim2 41171 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝐼‘(𝑅𝐺)) = (𝑁‘{𝐺}))
671, 3, 66syl2anc 584 . . . . . 6 (𝜑 → (𝐼‘(𝑅𝐺)) = (𝑁‘{𝐺}))
6810, 47, 48, 11, 4, 5, 43, 49, 1, 35, 25, 12, 13, 50, 53, 3, 15dia2dimlem2 41174 . . . . . . . . 9 (𝜑 → (𝑅𝐺) = 𝑈)
6968fveq2d 6826 . . . . . . . 8 (𝜑 → (𝐼‘(𝑅𝐺)) = (𝐼𝑈))
70 eqss 3945 . . . . . . . 8 ((𝐼‘(𝑅𝐺)) = (𝐼𝑈) ↔ ((𝐼‘(𝑅𝐺)) ⊆ (𝐼𝑈) ∧ (𝐼𝑈) ⊆ (𝐼‘(𝑅𝐺))))
7169, 70sylib 218 . . . . . . 7 (𝜑 → ((𝐼‘(𝑅𝐺)) ⊆ (𝐼𝑈) ∧ (𝐼𝑈) ⊆ (𝐼‘(𝑅𝐺))))
7271simpld 494 . . . . . 6 (𝜑 → (𝐼‘(𝑅𝐺)) ⊆ (𝐼𝑈))
7367, 72eqsstrrd 3965 . . . . 5 (𝜑 → (𝑁‘{𝐺}) ⊆ (𝐼𝑈))
743, 62eleqtrrd 2834 . . . . . 6 (𝜑𝐺 ∈ (Base‘𝑌))
7560, 22, 44, 21, 41, 74ellspsn5b 20928 . . . . 5 (𝜑 → (𝐺 ∈ (𝐼𝑈) ↔ (𝑁‘{𝐺}) ⊆ (𝐼𝑈)))
7673, 75mpbird 257 . . . 4 (𝜑𝐺 ∈ (𝐼𝑈))
77 dia2dimlem5.pl . . . . 5 = (LSSum‘𝑌)
787, 77lsmelvali 19562 . . . 4 ((((𝐼𝑉) ∈ (SubGrp‘𝑌) ∧ (𝐼𝑈) ∈ (SubGrp‘𝑌)) ∧ (𝐷 ∈ (𝐼𝑉) ∧ 𝐺 ∈ (𝐼𝑈))) → (𝐷(+g𝑌)𝐺) ∈ ((𝐼𝑉) (𝐼𝑈)))
7934, 42, 65, 76, 78syl22anc 838 . . 3 (𝜑 → (𝐷(+g𝑌)𝐺) ∈ ((𝐼𝑉) (𝐼𝑈)))
8018, 79eqeltrd 2831 . 2 (𝜑𝐹 ∈ ((𝐼𝑉) (𝐼𝑈)))
81 lmodabl 20842 . . . 4 (𝑌 ∈ LMod → 𝑌 ∈ Abel)
8221, 81syl 17 . . 3 (𝜑𝑌 ∈ Abel)
8377lsmcom 19770 . . 3 ((𝑌 ∈ Abel ∧ (𝐼𝑉) ∈ (SubGrp‘𝑌) ∧ (𝐼𝑈) ∈ (SubGrp‘𝑌)) → ((𝐼𝑉) (𝐼𝑈)) = ((𝐼𝑈) (𝐼𝑉)))
8482, 34, 42, 83syl3anc 1373 . 2 (𝜑 → ((𝐼𝑉) (𝐼𝑈)) = ((𝐼𝑈) (𝐼𝑉)))
8580, 84eleqtrd 2833 1 (𝜑𝐹 ∈ ((𝐼𝑈) (𝐼𝑉)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wss 3897  {csn 4573   class class class wbr 5089  ccom 5618  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  lecple 17168  joincjn 18217  meetcmee 18218  SubGrpcsubg 19033  LSSumclsm 19546  Abelcabl 19693  LModclmod 20793  LSubSpclss 20864  LSpanclspn 20904  LVecclvec 21036  Atomscatm 39372  HLchlt 39459  LHypclh 40093  LTrncltrn 40210  trLctrl 40267  DVecAcdveca 41111  DIsoAcdia 41137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lvec 21037  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268  df-tgrp 40852  df-tendo 40864  df-edring 40866  df-dveca 41112  df-disoa 41138
This theorem is referenced by:  dia2dimlem6  41178
  Copyright terms: Public domain W3C validator