| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspabs3 | Structured version Visualization version GIF version | ||
| Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| lspabs2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspabs2.p | ⊢ + = (+g‘𝑊) |
| lspabs2.o | ⊢ 0 = (0g‘𝑊) |
| lspabs2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspabs2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lspabs2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspabs3.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspabs3.xy | ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
| lspabs3.e | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| lspabs3 | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 2 | lspabs2.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | lspabs2.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | lveclmod 21106 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | lspabs2.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 7 | lspabs2.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | 7, 1, 2 | lspsncl 20976 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 9 | 5, 6, 8 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 10 | lspabs3.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 11 | 7, 1, 2 | lspsncl 20976 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 12 | 5, 10, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 13 | eqid 2736 | . . . . . . 7 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 14 | 1, 13 | lsmcl 21083 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊)) |
| 15 | 5, 9, 12, 14 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊)) |
| 16 | 7, 2 | lspsnsubg 20979 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 17 | 5, 6, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 18 | lspabs3.e | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | |
| 19 | 18, 17 | eqeltrrd 2841 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
| 20 | 7, 2 | lspsnid 20992 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 21 | 5, 6, 20 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋})) |
| 22 | 7, 2 | lspsnid 20992 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ (𝑁‘{𝑌})) |
| 23 | 5, 10, 22 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑌})) |
| 24 | lspabs2.p | . . . . . . 7 ⊢ + = (+g‘𝑊) | |
| 25 | 24, 13 | lsmelvali 19669 | . . . . . 6 ⊢ ((((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) ∧ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
| 26 | 17, 19, 21, 23, 25 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
| 27 | 1, 2, 5, 15, 26 | ellspsn5 20995 | . . . 4 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
| 28 | 18 | oveq2d 7448 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
| 29 | 13 | lsmidm 19682 | . . . . . 6 ⊢ ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋})) |
| 30 | 17, 29 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋})) |
| 31 | 28, 30 | eqtr3d 2778 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑋})) |
| 32 | 27, 31 | sseqtrd 4019 | . . 3 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋})) |
| 33 | lspabs2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 34 | 7, 24 | lmodvacl 20874 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| 35 | 5, 6, 10, 34 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
| 36 | lspabs3.xy | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) | |
| 37 | eldifsn 4785 | . . . . 5 ⊢ ((𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑋 + 𝑌) ∈ 𝑉 ∧ (𝑋 + 𝑌) ≠ 0 )) | |
| 38 | 35, 36, 37 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 })) |
| 39 | 7, 33, 2, 3, 38, 6 | lspsncmp 21119 | . . 3 ⊢ (𝜑 → ((𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋}) ↔ (𝑁‘{(𝑋 + 𝑌)}) = (𝑁‘{𝑋}))) |
| 40 | 32, 39 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) = (𝑁‘{𝑋})) |
| 41 | 40 | eqcomd 2742 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∖ cdif 3947 ⊆ wss 3950 {csn 4625 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 0gc0g 17485 SubGrpcsubg 19139 LSSumclsm 19653 LModclmod 20859 LSubSpclss 20930 LSpanclspn 20970 LVecclvec 21102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-subg 19142 df-cntz 19336 df-lsm 19655 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-drng 20732 df-lmod 20861 df-lss 20931 df-lsp 20971 df-lvec 21103 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |