MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspabs3 Structured version   Visualization version   GIF version

Theorem lspabs3 21060
Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.)
Hypotheses
Ref Expression
lspabs2.v 𝑉 = (Base‘𝑊)
lspabs2.p + = (+g𝑊)
lspabs2.o 0 = (0g𝑊)
lspabs2.n 𝑁 = (LSpan‘𝑊)
lspabs2.w (𝜑𝑊 ∈ LVec)
lspabs2.x (𝜑𝑋𝑉)
lspabs3.y (𝜑𝑌𝑉)
lspabs3.xy (𝜑 → (𝑋 + 𝑌) ≠ 0 )
lspabs3.e (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Assertion
Ref Expression
lspabs3 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))

Proof of Theorem lspabs3
StepHypRef Expression
1 eqid 2733 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 lspabs2.n . . . . 5 𝑁 = (LSpan‘𝑊)
3 lspabs2.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lveclmod 21042 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
6 lspabs2.x . . . . . . 7 (𝜑𝑋𝑉)
7 lspabs2.v . . . . . . . 8 𝑉 = (Base‘𝑊)
87, 1, 2lspsncl 20912 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
95, 6, 8syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
10 lspabs3.y . . . . . . 7 (𝜑𝑌𝑉)
117, 1, 2lspsncl 20912 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
125, 10, 11syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
13 eqid 2733 . . . . . . 7 (LSSum‘𝑊) = (LSSum‘𝑊)
141, 13lsmcl 21019 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
155, 9, 12, 14syl3anc 1373 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
167, 2lspsnsubg 20915 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
175, 6, 16syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
18 lspabs3.e . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
1918, 17eqeltrrd 2834 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
207, 2lspsnid 20928 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
215, 6, 20syl2anc 584 . . . . . 6 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
227, 2lspsnid 20928 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
235, 10, 22syl2anc 584 . . . . . 6 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
24 lspabs2.p . . . . . . 7 + = (+g𝑊)
2524, 13lsmelvali 19564 . . . . . 6 ((((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) ∧ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2617, 19, 21, 23, 25syl22anc 838 . . . . 5 (𝜑 → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
271, 2, 5, 15, 26ellspsn5 20931 . . . 4 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2818oveq2d 7368 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2913lsmidm 19577 . . . . . 6 ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
3017, 29syl 17 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
3128, 30eqtr3d 2770 . . . 4 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑋}))
3227, 31sseqtrd 3967 . . 3 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋}))
33 lspabs2.o . . . 4 0 = (0g𝑊)
347, 24lmodvacl 20810 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
355, 6, 10, 34syl3anc 1373 . . . . 5 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
36 lspabs3.xy . . . . 5 (𝜑 → (𝑋 + 𝑌) ≠ 0 )
37 eldifsn 4737 . . . . 5 ((𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑋 + 𝑌) ∈ 𝑉 ∧ (𝑋 + 𝑌) ≠ 0 ))
3835, 36, 37sylanbrc 583 . . . 4 (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }))
397, 33, 2, 3, 38, 6lspsncmp 21055 . . 3 (𝜑 → ((𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋}) ↔ (𝑁‘{(𝑋 + 𝑌)}) = (𝑁‘{𝑋})))
4032, 39mpbid 232 . 2 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) = (𝑁‘{𝑋}))
4140eqcomd 2739 1 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wne 2929  cdif 3895  wss 3898  {csn 4575  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  SubGrpcsubg 19035  LSSumclsm 19548  LModclmod 20795  LSubSpclss 20866  LSpanclspn 20906  LVecclvec 21038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19231  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-drng 20648  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lvec 21039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator