MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspabs3 Structured version   Visualization version   GIF version

Theorem lspabs3 19896
Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.)
Hypotheses
Ref Expression
lspabs2.v 𝑉 = (Base‘𝑊)
lspabs2.p + = (+g𝑊)
lspabs2.o 0 = (0g𝑊)
lspabs2.n 𝑁 = (LSpan‘𝑊)
lspabs2.w (𝜑𝑊 ∈ LVec)
lspabs2.x (𝜑𝑋𝑉)
lspabs3.y (𝜑𝑌𝑉)
lspabs3.xy (𝜑 → (𝑋 + 𝑌) ≠ 0 )
lspabs3.e (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Assertion
Ref Expression
lspabs3 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))

Proof of Theorem lspabs3
StepHypRef Expression
1 eqid 2824 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 lspabs2.n . . . . 5 𝑁 = (LSpan‘𝑊)
3 lspabs2.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lveclmod 19881 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
6 lspabs2.x . . . . . . 7 (𝜑𝑋𝑉)
7 lspabs2.v . . . . . . . 8 𝑉 = (Base‘𝑊)
87, 1, 2lspsncl 19752 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
95, 6, 8syl2anc 587 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
10 lspabs3.y . . . . . . 7 (𝜑𝑌𝑉)
117, 1, 2lspsncl 19752 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
125, 10, 11syl2anc 587 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
13 eqid 2824 . . . . . . 7 (LSSum‘𝑊) = (LSSum‘𝑊)
141, 13lsmcl 19858 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
155, 9, 12, 14syl3anc 1368 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊))
167, 2lspsnsubg 19755 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
175, 6, 16syl2anc 587 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
18 lspabs3.e . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
1918, 17eqeltrrd 2917 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
207, 2lspsnid 19768 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
215, 6, 20syl2anc 587 . . . . . 6 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
227, 2lspsnid 19768 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
235, 10, 22syl2anc 587 . . . . . 6 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
24 lspabs2.p . . . . . . 7 + = (+g𝑊)
2524, 13lsmelvali 18778 . . . . . 6 ((((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) ∧ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2617, 19, 21, 23, 25syl22anc 837 . . . . 5 (𝜑 → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
271, 2, 5, 15, 26lspsnel5a 19771 . . . 4 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2818oveq2d 7166 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2913lsmidm 18791 . . . . . 6 ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
3017, 29syl 17 . . . . 5 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋}))
3128, 30eqtr3d 2861 . . . 4 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑋}))
3227, 31sseqtrd 3994 . . 3 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋}))
33 lspabs2.o . . . 4 0 = (0g𝑊)
347, 24lmodvacl 19651 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 + 𝑌) ∈ 𝑉)
355, 6, 10, 34syl3anc 1368 . . . . 5 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
36 lspabs3.xy . . . . 5 (𝜑 → (𝑋 + 𝑌) ≠ 0 )
37 eldifsn 4705 . . . . 5 ((𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑋 + 𝑌) ∈ 𝑉 ∧ (𝑋 + 𝑌) ≠ 0 ))
3835, 36, 37sylanbrc 586 . . . 4 (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }))
397, 33, 2, 3, 38, 6lspsncmp 19891 . . 3 (𝜑 → ((𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋}) ↔ (𝑁‘{(𝑋 + 𝑌)}) = (𝑁‘{𝑋})))
4032, 39mpbid 235 . 2 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) = (𝑁‘{𝑋}))
4140eqcomd 2830 1 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  wne 3014  cdif 3917  wss 3920  {csn 4551  cfv 6344  (class class class)co 7150  Basecbs 16486  +gcplusg 16568  0gc0g 16716  SubGrpcsubg 18276  LSSumclsm 18762  LModclmod 19637  LSubSpclss 19706  LSpanclspn 19746  LVecclvec 19877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-tpos 7889  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11700  df-3 11701  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-cntz 18450  df-lsm 18764  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19379  df-dvdsr 19397  df-unit 19398  df-invr 19428  df-drng 19507  df-lmod 19639  df-lss 19707  df-lsp 19747  df-lvec 19878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator