| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspabs3 | Structured version Visualization version GIF version | ||
| Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| lspabs2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspabs2.p | ⊢ + = (+g‘𝑊) |
| lspabs2.o | ⊢ 0 = (0g‘𝑊) |
| lspabs2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspabs2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lspabs2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspabs3.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspabs3.xy | ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
| lspabs3.e | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| lspabs3 | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 2 | lspabs2.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | lspabs2.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | lveclmod 21013 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | lspabs2.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 7 | lspabs2.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | 7, 1, 2 | lspsncl 20883 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 9 | 5, 6, 8 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 10 | lspabs3.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 11 | 7, 1, 2 | lspsncl 20883 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 12 | 5, 10, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 13 | eqid 2729 | . . . . . . 7 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 14 | 1, 13 | lsmcl 20990 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊)) |
| 15 | 5, 9, 12, 14 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊)) |
| 16 | 7, 2 | lspsnsubg 20886 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 17 | 5, 6, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 18 | lspabs3.e | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | |
| 19 | 18, 17 | eqeltrrd 2829 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
| 20 | 7, 2 | lspsnid 20899 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
| 21 | 5, 6, 20 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋})) |
| 22 | 7, 2 | lspsnid 20899 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ (𝑁‘{𝑌})) |
| 23 | 5, 10, 22 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑌})) |
| 24 | lspabs2.p | . . . . . . 7 ⊢ + = (+g‘𝑊) | |
| 25 | 24, 13 | lsmelvali 19580 | . . . . . 6 ⊢ ((((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) ∧ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
| 26 | 17, 19, 21, 23, 25 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
| 27 | 1, 2, 5, 15, 26 | ellspsn5 20902 | . . . 4 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
| 28 | 18 | oveq2d 7403 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
| 29 | 13 | lsmidm 19593 | . . . . . 6 ⊢ ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋})) |
| 30 | 17, 29 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋})) |
| 31 | 28, 30 | eqtr3d 2766 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑋})) |
| 32 | 27, 31 | sseqtrd 3983 | . . 3 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋})) |
| 33 | lspabs2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 34 | 7, 24 | lmodvacl 20781 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
| 35 | 5, 6, 10, 34 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
| 36 | lspabs3.xy | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) | |
| 37 | eldifsn 4750 | . . . . 5 ⊢ ((𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑋 + 𝑌) ∈ 𝑉 ∧ (𝑋 + 𝑌) ≠ 0 )) | |
| 38 | 35, 36, 37 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 })) |
| 39 | 7, 33, 2, 3, 38, 6 | lspsncmp 21026 | . . 3 ⊢ (𝜑 → ((𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋}) ↔ (𝑁‘{(𝑋 + 𝑌)}) = (𝑁‘{𝑋}))) |
| 40 | 32, 39 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) = (𝑁‘{𝑋})) |
| 41 | 40 | eqcomd 2735 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 SubGrpcsubg 19052 LSSumclsm 19564 LModclmod 20766 LSubSpclss 20837 LSpanclspn 20877 LVecclvec 21009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cntz 19249 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lvec 21010 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |