Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspabs3 | Structured version Visualization version GIF version |
Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.) |
Ref | Expression |
---|---|
lspabs2.v | ⊢ 𝑉 = (Base‘𝑊) |
lspabs2.p | ⊢ + = (+g‘𝑊) |
lspabs2.o | ⊢ 0 = (0g‘𝑊) |
lspabs2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspabs2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspabs2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspabs3.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspabs3.xy | ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
lspabs3.e | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lspabs3 | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
2 | lspabs2.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | lspabs2.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
4 | lveclmod 20451 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
6 | lspabs2.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
7 | lspabs2.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝑊) | |
8 | 7, 1, 2 | lspsncl 20322 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
9 | 5, 6, 8 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
10 | lspabs3.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
11 | 7, 1, 2 | lspsncl 20322 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
12 | 5, 10, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
13 | eqid 2737 | . . . . . . 7 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
14 | 1, 13 | lsmcl 20428 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊)) |
15 | 5, 9, 12, 14 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑊)) |
16 | 7, 2 | lspsnsubg 20325 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
17 | 5, 6, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
18 | lspabs3.e | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | |
19 | 18, 17 | eqeltrrd 2839 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
20 | 7, 2 | lspsnid 20338 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
21 | 5, 6, 20 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑋})) |
22 | 7, 2 | lspsnid 20338 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ (𝑁‘{𝑌})) |
23 | 5, 10, 22 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑌})) |
24 | lspabs2.p | . . . . . . 7 ⊢ + = (+g‘𝑊) | |
25 | 24, 13 | lsmelvali 19331 | . . . . . 6 ⊢ ((((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) ∧ (𝑋 ∈ (𝑁‘{𝑋}) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
26 | 17, 19, 21, 23, 25 | syl22anc 836 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
27 | 1, 2, 5, 15, 26 | lspsnel5a 20341 | . . . 4 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
28 | 18 | oveq2d 7333 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌}))) |
29 | 13 | lsmidm 19344 | . . . . . 6 ⊢ ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋})) |
30 | 17, 29 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘{𝑋})) |
31 | 28, 30 | eqtr3d 2779 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑋})) |
32 | 27, 31 | sseqtrd 3971 | . . 3 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋})) |
33 | lspabs2.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
34 | 7, 24 | lmodvacl 20220 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) |
35 | 5, 6, 10, 34 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
36 | lspabs3.xy | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) | |
37 | eldifsn 4732 | . . . . 5 ⊢ ((𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑋 + 𝑌) ∈ 𝑉 ∧ (𝑋 + 𝑌) ≠ 0 )) | |
38 | 35, 36, 37 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 })) |
39 | 7, 33, 2, 3, 38, 6 | lspsncmp 20461 | . . 3 ⊢ (𝜑 → ((𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋}) ↔ (𝑁‘{(𝑋 + 𝑌)}) = (𝑁‘{𝑋}))) |
40 | 32, 39 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) = (𝑁‘{𝑋})) |
41 | 40 | eqcomd 2743 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∖ cdif 3894 ⊆ wss 3897 {csn 4571 ‘cfv 6466 (class class class)co 7317 Basecbs 16989 +gcplusg 17039 0gc0g 17227 SubGrpcsubg 18825 LSSumclsm 19315 LModclmod 20206 LSubSpclss 20276 LSpanclspn 20316 LVecclvec 20447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-tpos 8091 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-mulr 17053 df-0g 17229 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-submnd 18508 df-grp 18656 df-minusg 18657 df-sbg 18658 df-subg 18828 df-cntz 18999 df-lsm 19317 df-cmn 19463 df-abl 19464 df-mgp 19796 df-ur 19813 df-ring 19860 df-oppr 19937 df-dvdsr 19958 df-unit 19959 df-invr 19989 df-drng 20072 df-lmod 20208 df-lss 20277 df-lsp 20317 df-lvec 20448 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |