| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp0 | Structured version Visualization version GIF version | ||
| Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapdindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
| mapdindp1.p | ⊢ + = (+g‘𝑊) |
| mapdindp1.o | ⊢ 0 = (0g‘𝑊) |
| mapdindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| mapdindp1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| mapdindp1.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdindp1.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdindp1.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| mapdindp1.W | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| mapdindp1.e | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
| mapdindp1.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdindp1.f | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
| mapdindp1.yz | ⊢ (𝜑 → (𝑌 + 𝑍) ≠ 0 ) |
| Ref | Expression |
|---|---|
| mapdindp0 | ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 2 | mapdindp1.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | mapdindp1.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | lveclmod 21040 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | mapdindp1.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 7 | 6 | eldifad 3909 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 8 | mapdindp1.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | 8, 1, 2 | lspsncl 20910 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 10 | 5, 7, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 11 | mapdindp1.e | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
| 12 | 11, 10 | eqeltrrd 2832 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) |
| 13 | eqid 2731 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 14 | 1, 13 | lsmcl 21017 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑊)) |
| 15 | 5, 10, 12, 14 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑊)) |
| 16 | 1 | lsssssubg 20891 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 17 | 5, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 18 | 17, 10 | sseldd 3930 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
| 19 | 11, 18 | eqeltrrd 2832 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) |
| 20 | 8, 2 | lspsnid 20926 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ (𝑁‘{𝑌})) |
| 21 | 5, 7, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑌})) |
| 22 | mapdindp1.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 23 | 22 | eldifad 3909 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 24 | 8, 2 | lspsnid 20926 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉) → 𝑍 ∈ (𝑁‘{𝑍})) |
| 25 | 5, 23, 24 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (𝑁‘{𝑍})) |
| 26 | mapdindp1.p | . . . . . 6 ⊢ + = (+g‘𝑊) | |
| 27 | 26, 13 | lsmelvali 19562 | . . . . 5 ⊢ ((((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) ∧ (𝑌 ∈ (𝑁‘{𝑌}) ∧ 𝑍 ∈ (𝑁‘{𝑍}))) → (𝑌 + 𝑍) ∈ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
| 28 | 18, 19, 21, 25, 27 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
| 29 | 1, 2, 5, 15, 28 | ellspsn5 20929 | . . 3 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
| 30 | 11 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
| 31 | 13 | lsmidm 19575 | . . . . 5 ⊢ ((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑌})) |
| 32 | 18, 31 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑌})) |
| 33 | 30, 32 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) = (𝑁‘{𝑌})) |
| 34 | 29, 33 | sseqtrd 3966 | . 2 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌})) |
| 35 | mapdindp1.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 36 | 8, 26 | lmodvacl 20808 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌 + 𝑍) ∈ 𝑉) |
| 37 | 5, 7, 23, 36 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ 𝑉) |
| 38 | mapdindp1.yz | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ≠ 0 ) | |
| 39 | eldifsn 4735 | . . . 4 ⊢ ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 )) | |
| 40 | 37, 38, 39 | sylanbrc 583 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 })) |
| 41 | 8, 35, 2, 3, 40, 7 | lspsncmp 21053 | . 2 ⊢ (𝜑 → ((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌}) ↔ (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))) |
| 42 | 34, 41 | mpbid 232 | 1 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 ⊆ wss 3897 {csn 4573 {cpr 4575 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 0gc0g 17343 SubGrpcsubg 19033 LSSumclsm 19546 LModclmod 20793 LSubSpclss 20864 LSpanclspn 20904 LVecclvec 21036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19229 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-drng 20646 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lvec 21037 |
| This theorem is referenced by: mapdindp1 41829 mapdindp2 41830 |
| Copyright terms: Public domain | W3C validator |