![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp0 | Structured version Visualization version GIF version |
Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015.) |
Ref | Expression |
---|---|
mapdindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
mapdindp1.p | ⊢ + = (+g‘𝑊) |
mapdindp1.o | ⊢ 0 = (0g‘𝑊) |
mapdindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
mapdindp1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
mapdindp1.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.W | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.e | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
mapdindp1.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdindp1.f | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
mapdindp1.yz | ⊢ (𝜑 → (𝑌 + 𝑍) ≠ 0 ) |
Ref | Expression |
---|---|
mapdindp0 | ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2793 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
2 | mapdindp1.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | mapdindp1.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
4 | lveclmod 19556 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
6 | mapdindp1.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
7 | 6 | eldifad 3866 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
8 | mapdindp1.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
9 | 8, 1, 2 | lspsncl 19427 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
10 | 5, 7, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
11 | mapdindp1.e | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
12 | 11, 10 | eqeltrrd 2882 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) |
13 | eqid 2793 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
14 | 1, 13 | lsmcl 19533 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑊)) |
15 | 5, 10, 12, 14 | syl3anc 1362 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑊)) |
16 | 1 | lsssssubg 19408 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
17 | 5, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
18 | 17, 10 | sseldd 3885 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
19 | 11, 18 | eqeltrrd 2882 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) |
20 | 8, 2 | lspsnid 19443 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ (𝑁‘{𝑌})) |
21 | 5, 7, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑌})) |
22 | mapdindp1.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
23 | 22 | eldifad 3866 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
24 | 8, 2 | lspsnid 19443 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉) → 𝑍 ∈ (𝑁‘{𝑍})) |
25 | 5, 23, 24 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (𝑁‘{𝑍})) |
26 | mapdindp1.p | . . . . . 6 ⊢ + = (+g‘𝑊) | |
27 | 26, 13 | lsmelvali 18493 | . . . . 5 ⊢ ((((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) ∧ (𝑌 ∈ (𝑁‘{𝑌}) ∧ 𝑍 ∈ (𝑁‘{𝑍}))) → (𝑌 + 𝑍) ∈ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
28 | 18, 19, 21, 25, 27 | syl22anc 835 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
29 | 1, 2, 5, 15, 28 | lspsnel5a 19446 | . . 3 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
30 | 11 | oveq2d 7023 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
31 | 13 | lsmidm 18505 | . . . . 5 ⊢ ((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑌})) |
32 | 18, 31 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑌})) |
33 | 30, 32 | eqtr3d 2831 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) = (𝑁‘{𝑌})) |
34 | 29, 33 | sseqtrd 3923 | . 2 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌})) |
35 | mapdindp1.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
36 | 8, 26 | lmodvacl 19326 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌 + 𝑍) ∈ 𝑉) |
37 | 5, 7, 23, 36 | syl3anc 1362 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ 𝑉) |
38 | mapdindp1.yz | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ≠ 0 ) | |
39 | eldifsn 4620 | . . . 4 ⊢ ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 )) | |
40 | 37, 38, 39 | sylanbrc 583 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 })) |
41 | 8, 35, 2, 3, 40, 7 | lspsncmp 19566 | . 2 ⊢ (𝜑 → ((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌}) ↔ (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))) |
42 | 34, 41 | mpbid 233 | 1 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1520 ∈ wcel 2079 ≠ wne 2982 ∖ cdif 3851 ⊆ wss 3854 {csn 4466 {cpr 4468 ‘cfv 6217 (class class class)co 7007 Basecbs 16300 +gcplusg 16382 0gc0g 16530 SubGrpcsubg 18015 LSSumclsm 18477 LModclmod 19312 LSubSpclss 19381 LSpanclspn 19421 LVecclvec 19552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-tpos 7734 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-2 11537 df-3 11538 df-ndx 16303 df-slot 16304 df-base 16306 df-sets 16307 df-ress 16308 df-plusg 16395 df-mulr 16396 df-0g 16532 df-mgm 17669 df-sgrp 17711 df-mnd 17722 df-submnd 17763 df-grp 17852 df-minusg 17853 df-sbg 17854 df-subg 18018 df-cntz 18176 df-lsm 18479 df-cmn 18623 df-abl 18624 df-mgp 18918 df-ur 18930 df-ring 18977 df-oppr 19051 df-dvdsr 19069 df-unit 19070 df-invr 19100 df-drng 19182 df-lmod 19314 df-lss 19382 df-lsp 19422 df-lvec 19553 |
This theorem is referenced by: mapdindp1 38337 mapdindp2 38338 |
Copyright terms: Public domain | W3C validator |