Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdindp0 Structured version   Visualization version   GIF version

Theorem mapdindp0 39470
Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015.)
Hypotheses
Ref Expression
mapdindp1.v 𝑉 = (Base‘𝑊)
mapdindp1.p + = (+g𝑊)
mapdindp1.o 0 = (0g𝑊)
mapdindp1.n 𝑁 = (LSpan‘𝑊)
mapdindp1.w (𝜑𝑊 ∈ LVec)
mapdindp1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdindp1.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdindp1.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdindp1.W (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdindp1.e (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdindp1.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdindp1.f (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
mapdindp1.yz (𝜑 → (𝑌 + 𝑍) ≠ 0 )
Assertion
Ref Expression
mapdindp0 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))

Proof of Theorem mapdindp0
StepHypRef Expression
1 eqid 2737 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 mapdindp1.n . . . 4 𝑁 = (LSpan‘𝑊)
3 mapdindp1.w . . . . 5 (𝜑𝑊 ∈ LVec)
4 lveclmod 20143 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
6 mapdindp1.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
76eldifad 3878 . . . . . 6 (𝜑𝑌𝑉)
8 mapdindp1.v . . . . . . 7 𝑉 = (Base‘𝑊)
98, 1, 2lspsncl 20014 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
105, 7, 9syl2anc 587 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
11 mapdindp1.e . . . . . 6 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
1211, 10eqeltrrd 2839 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
13 eqid 2737 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
141, 13lsmcl 20120 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑊))
155, 10, 12, 14syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑊))
161lsssssubg 19995 . . . . . . 7 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
175, 16syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
1817, 10sseldd 3902 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
1911, 18eqeltrrd 2839 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
208, 2lspsnid 20030 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
215, 7, 20syl2anc 587 . . . . 5 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
22 mapdindp1.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
2322eldifad 3878 . . . . . 6 (𝜑𝑍𝑉)
248, 2lspsnid 20030 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → 𝑍 ∈ (𝑁‘{𝑍}))
255, 23, 24syl2anc 587 . . . . 5 (𝜑𝑍 ∈ (𝑁‘{𝑍}))
26 mapdindp1.p . . . . . 6 + = (+g𝑊)
2726, 13lsmelvali 19039 . . . . 5 ((((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) ∧ (𝑌 ∈ (𝑁‘{𝑌}) ∧ 𝑍 ∈ (𝑁‘{𝑍}))) → (𝑌 + 𝑍) ∈ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
2818, 19, 21, 25, 27syl22anc 839 . . . 4 (𝜑 → (𝑌 + 𝑍) ∈ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
291, 2, 5, 15, 28lspsnel5a 20033 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
3011oveq2d 7229 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
3113lsmidm 19052 . . . . 5 ((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
3218, 31syl 17 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
3330, 32eqtr3d 2779 . . 3 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) = (𝑁‘{𝑌}))
3429, 33sseqtrd 3941 . 2 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌}))
35 mapdindp1.o . . 3 0 = (0g𝑊)
368, 26lmodvacl 19913 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
375, 7, 23, 36syl3anc 1373 . . . 4 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
38 mapdindp1.yz . . . 4 (𝜑 → (𝑌 + 𝑍) ≠ 0 )
39 eldifsn 4700 . . . 4 ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
4037, 38, 39sylanbrc 586 . . 3 (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }))
418, 35, 2, 3, 40, 7lspsncmp 20153 . 2 (𝜑 → ((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌}) ↔ (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌})))
4234, 41mpbid 235 1 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1543  wcel 2110  wne 2940  cdif 3863  wss 3866  {csn 4541  {cpr 4543  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  0gc0g 16944  SubGrpcsubg 18537  LSSumclsm 19023  LModclmod 19899  LSubSpclss 19968  LSpanclspn 20008  LVecclvec 20139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-cntz 18711  df-lsm 19025  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-drng 19769  df-lmod 19901  df-lss 19969  df-lsp 20009  df-lvec 20140
This theorem is referenced by:  mapdindp1  39471  mapdindp2  39472
  Copyright terms: Public domain W3C validator