| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp0 | Structured version Visualization version GIF version | ||
| Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapdindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
| mapdindp1.p | ⊢ + = (+g‘𝑊) |
| mapdindp1.o | ⊢ 0 = (0g‘𝑊) |
| mapdindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| mapdindp1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| mapdindp1.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdindp1.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdindp1.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| mapdindp1.W | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| mapdindp1.e | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
| mapdindp1.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdindp1.f | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
| mapdindp1.yz | ⊢ (𝜑 → (𝑌 + 𝑍) ≠ 0 ) |
| Ref | Expression |
|---|---|
| mapdindp0 | ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 2 | mapdindp1.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | mapdindp1.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | lveclmod 21010 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | mapdindp1.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 7 | 6 | eldifad 3915 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 8 | mapdindp1.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | 8, 1, 2 | lspsncl 20880 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 10 | 5, 7, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 11 | mapdindp1.e | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
| 12 | 11, 10 | eqeltrrd 2829 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) |
| 13 | eqid 2729 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 14 | 1, 13 | lsmcl 20987 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑊)) |
| 15 | 5, 10, 12, 14 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑊)) |
| 16 | 1 | lsssssubg 20861 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 17 | 5, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 18 | 17, 10 | sseldd 3936 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
| 19 | 11, 18 | eqeltrrd 2829 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) |
| 20 | 8, 2 | lspsnid 20896 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ (𝑁‘{𝑌})) |
| 21 | 5, 7, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑌})) |
| 22 | mapdindp1.z | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 23 | 22 | eldifad 3915 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 24 | 8, 2 | lspsnid 20896 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉) → 𝑍 ∈ (𝑁‘{𝑍})) |
| 25 | 5, 23, 24 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (𝑁‘{𝑍})) |
| 26 | mapdindp1.p | . . . . . 6 ⊢ + = (+g‘𝑊) | |
| 27 | 26, 13 | lsmelvali 19529 | . . . . 5 ⊢ ((((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) ∧ (𝑌 ∈ (𝑁‘{𝑌}) ∧ 𝑍 ∈ (𝑁‘{𝑍}))) → (𝑌 + 𝑍) ∈ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
| 28 | 18, 19, 21, 25, 27 | syl22anc 838 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
| 29 | 1, 2, 5, 15, 28 | ellspsn5 20899 | . . 3 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
| 30 | 11 | oveq2d 7365 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
| 31 | 13 | lsmidm 19542 | . . . . 5 ⊢ ((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑌})) |
| 32 | 18, 31 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑌})) |
| 33 | 30, 32 | eqtr3d 2766 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) = (𝑁‘{𝑌})) |
| 34 | 29, 33 | sseqtrd 3972 | . 2 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌})) |
| 35 | mapdindp1.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 36 | 8, 26 | lmodvacl 20778 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌 + 𝑍) ∈ 𝑉) |
| 37 | 5, 7, 23, 36 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ 𝑉) |
| 38 | mapdindp1.yz | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ≠ 0 ) | |
| 39 | eldifsn 4737 | . . . 4 ⊢ ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 )) | |
| 40 | 37, 38, 39 | sylanbrc 583 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 })) |
| 41 | 8, 35, 2, 3, 40, 7 | lspsncmp 21023 | . 2 ⊢ (𝜑 → ((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌}) ↔ (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))) |
| 42 | 34, 41 | mpbid 232 | 1 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 ⊆ wss 3903 {csn 4577 {cpr 4579 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 0gc0g 17343 SubGrpcsubg 18999 LSSumclsm 19513 LModclmod 20763 LSubSpclss 20834 LSpanclspn 20874 LVecclvec 21006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cntz 19196 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lvec 21007 |
| This theorem is referenced by: mapdindp1 41703 mapdindp2 41704 |
| Copyright terms: Public domain | W3C validator |