Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdindp0 Structured version   Visualization version   GIF version

Theorem mapdindp0 41828
Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015.)
Hypotheses
Ref Expression
mapdindp1.v 𝑉 = (Base‘𝑊)
mapdindp1.p + = (+g𝑊)
mapdindp1.o 0 = (0g𝑊)
mapdindp1.n 𝑁 = (LSpan‘𝑊)
mapdindp1.w (𝜑𝑊 ∈ LVec)
mapdindp1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdindp1.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdindp1.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdindp1.W (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdindp1.e (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdindp1.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdindp1.f (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
mapdindp1.yz (𝜑 → (𝑌 + 𝑍) ≠ 0 )
Assertion
Ref Expression
mapdindp0 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))

Proof of Theorem mapdindp0
StepHypRef Expression
1 eqid 2731 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 mapdindp1.n . . . 4 𝑁 = (LSpan‘𝑊)
3 mapdindp1.w . . . . 5 (𝜑𝑊 ∈ LVec)
4 lveclmod 21040 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
6 mapdindp1.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
76eldifad 3909 . . . . . 6 (𝜑𝑌𝑉)
8 mapdindp1.v . . . . . . 7 𝑉 = (Base‘𝑊)
98, 1, 2lspsncl 20910 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
105, 7, 9syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
11 mapdindp1.e . . . . . 6 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
1211, 10eqeltrrd 2832 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
13 eqid 2731 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
141, 13lsmcl 21017 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑊))
155, 10, 12, 14syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑊))
161lsssssubg 20891 . . . . . . 7 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
175, 16syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
1817, 10sseldd 3930 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
1911, 18eqeltrrd 2832 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
208, 2lspsnid 20926 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
215, 7, 20syl2anc 584 . . . . 5 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
22 mapdindp1.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
2322eldifad 3909 . . . . . 6 (𝜑𝑍𝑉)
248, 2lspsnid 20926 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → 𝑍 ∈ (𝑁‘{𝑍}))
255, 23, 24syl2anc 584 . . . . 5 (𝜑𝑍 ∈ (𝑁‘{𝑍}))
26 mapdindp1.p . . . . . 6 + = (+g𝑊)
2726, 13lsmelvali 19562 . . . . 5 ((((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) ∧ (𝑌 ∈ (𝑁‘{𝑌}) ∧ 𝑍 ∈ (𝑁‘{𝑍}))) → (𝑌 + 𝑍) ∈ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
2818, 19, 21, 25, 27syl22anc 838 . . . 4 (𝜑 → (𝑌 + 𝑍) ∈ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
291, 2, 5, 15, 28ellspsn5 20929 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
3011oveq2d 7362 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
3113lsmidm 19575 . . . . 5 ((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
3218, 31syl 17 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
3330, 32eqtr3d 2768 . . 3 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) = (𝑁‘{𝑌}))
3429, 33sseqtrd 3966 . 2 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌}))
35 mapdindp1.o . . 3 0 = (0g𝑊)
368, 26lmodvacl 20808 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
375, 7, 23, 36syl3anc 1373 . . . 4 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
38 mapdindp1.yz . . . 4 (𝜑 → (𝑌 + 𝑍) ≠ 0 )
39 eldifsn 4735 . . . 4 ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
4037, 38, 39sylanbrc 583 . . 3 (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }))
418, 35, 2, 3, 40, 7lspsncmp 21053 . 2 (𝜑 → ((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌}) ↔ (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌})))
4234, 41mpbid 232 1 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  wne 2928  cdif 3894  wss 3897  {csn 4573  {cpr 4575  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  SubGrpcsubg 19033  LSSumclsm 19546  LModclmod 20793  LSubSpclss 20864  LSpanclspn 20904  LVecclvec 21036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lvec 21037
This theorem is referenced by:  mapdindp1  41829  mapdindp2  41830
  Copyright terms: Public domain W3C validator