Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdindp0 Structured version   Visualization version   GIF version

Theorem mapdindp0 39733
Description: Vector independence lemma. (Contributed by NM, 29-Apr-2015.)
Hypotheses
Ref Expression
mapdindp1.v 𝑉 = (Base‘𝑊)
mapdindp1.p + = (+g𝑊)
mapdindp1.o 0 = (0g𝑊)
mapdindp1.n 𝑁 = (LSpan‘𝑊)
mapdindp1.w (𝜑𝑊 ∈ LVec)
mapdindp1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdindp1.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdindp1.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdindp1.W (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdindp1.e (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdindp1.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdindp1.f (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
mapdindp1.yz (𝜑 → (𝑌 + 𝑍) ≠ 0 )
Assertion
Ref Expression
mapdindp0 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))

Proof of Theorem mapdindp0
StepHypRef Expression
1 eqid 2738 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 mapdindp1.n . . . 4 𝑁 = (LSpan‘𝑊)
3 mapdindp1.w . . . . 5 (𝜑𝑊 ∈ LVec)
4 lveclmod 20368 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
6 mapdindp1.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
76eldifad 3899 . . . . . 6 (𝜑𝑌𝑉)
8 mapdindp1.v . . . . . . 7 𝑉 = (Base‘𝑊)
98, 1, 2lspsncl 20239 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
105, 7, 9syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
11 mapdindp1.e . . . . . 6 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
1211, 10eqeltrrd 2840 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
13 eqid 2738 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
141, 13lsmcl 20345 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑊))
155, 10, 12, 14syl3anc 1370 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑊))
161lsssssubg 20220 . . . . . . 7 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
175, 16syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
1817, 10sseldd 3922 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
1911, 18eqeltrrd 2840 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
208, 2lspsnid 20255 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
215, 7, 20syl2anc 584 . . . . 5 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
22 mapdindp1.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
2322eldifad 3899 . . . . . 6 (𝜑𝑍𝑉)
248, 2lspsnid 20255 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → 𝑍 ∈ (𝑁‘{𝑍}))
255, 23, 24syl2anc 584 . . . . 5 (𝜑𝑍 ∈ (𝑁‘{𝑍}))
26 mapdindp1.p . . . . . 6 + = (+g𝑊)
2726, 13lsmelvali 19255 . . . . 5 ((((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) ∧ (𝑌 ∈ (𝑁‘{𝑌}) ∧ 𝑍 ∈ (𝑁‘{𝑍}))) → (𝑌 + 𝑍) ∈ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
2818, 19, 21, 25, 27syl22anc 836 . . . 4 (𝜑 → (𝑌 + 𝑍) ∈ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
291, 2, 5, 15, 28lspsnel5a 20258 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
3011oveq2d 7291 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
3113lsmidm 19268 . . . . 5 ((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
3218, 31syl 17 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑌})) = (𝑁‘{𝑌}))
3330, 32eqtr3d 2780 . . 3 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})) = (𝑁‘{𝑌}))
3429, 33sseqtrd 3961 . 2 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌}))
35 mapdindp1.o . . 3 0 = (0g𝑊)
368, 26lmodvacl 20137 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
375, 7, 23, 36syl3anc 1370 . . . 4 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
38 mapdindp1.yz . . . 4 (𝜑 → (𝑌 + 𝑍) ≠ 0 )
39 eldifsn 4720 . . . 4 ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
4037, 38, 39sylanbrc 583 . . 3 (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }))
418, 35, 2, 3, 40, 7lspsncmp 20378 . 2 (𝜑 → ((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌}) ↔ (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌})))
4234, 41mpbid 231 1 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2106  wne 2943  cdif 3884  wss 3887  {csn 4561  {cpr 4563  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  SubGrpcsubg 18749  LSSumclsm 19239  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LVecclvec 20364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365
This theorem is referenced by:  mapdindp1  39734  mapdindp2  39735
  Copyright terms: Public domain W3C validator