MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppreli Structured version   Visualization version   GIF version

Theorem lsppreli 21004
Description: A vector expressed as a sum belongs to the span of its components. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lsppreli.v 𝑉 = (Base‘𝑊)
lsppreli.p + = (+g𝑊)
lsppreli.t · = ( ·𝑠𝑊)
lsppreli.f 𝐹 = (Scalar‘𝑊)
lsppreli.k 𝐾 = (Base‘𝐹)
lsppreli.n 𝑁 = (LSpan‘𝑊)
lsppreli.w (𝜑𝑊 ∈ LMod)
lsppreli.a (𝜑𝐴𝐾)
lsppreli.b (𝜑𝐵𝐾)
lsppreli.x (𝜑𝑋𝑉)
lsppreli.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lsppreli (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ∈ (𝑁‘{𝑋, 𝑌}))

Proof of Theorem lsppreli
StepHypRef Expression
1 lsppreli.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lsppreli.x . . . 4 (𝜑𝑋𝑉)
3 lsppreli.v . . . . 5 𝑉 = (Base‘𝑊)
4 lsppreli.n . . . . 5 𝑁 = (LSpan‘𝑊)
53, 4lspsnsubg 20893 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
61, 2, 5syl2anc 584 . . 3 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
7 lsppreli.y . . . 4 (𝜑𝑌𝑉)
83, 4lspsnsubg 20893 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
91, 7, 8syl2anc 584 . . 3 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
10 lsppreli.t . . . 4 · = ( ·𝑠𝑊)
11 lsppreli.f . . . 4 𝐹 = (Scalar‘𝑊)
12 lsppreli.k . . . 4 𝐾 = (Base‘𝐹)
13 lsppreli.a . . . 4 (𝜑𝐴𝐾)
143, 10, 11, 12, 4, 1, 13, 2ellspsni 20914 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋}))
15 lsppreli.b . . . 4 (𝜑𝐵𝐾)
163, 10, 11, 12, 4, 1, 15, 7ellspsni 20914 . . 3 (𝜑 → (𝐵 · 𝑌) ∈ (𝑁‘{𝑌}))
17 lsppreli.p . . . 4 + = (+g𝑊)
18 eqid 2730 . . . 4 (LSSum‘𝑊) = (LSSum‘𝑊)
1917, 18lsmelvali 19587 . . 3 ((((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) ∧ ((𝐴 · 𝑋) ∈ (𝑁‘{𝑋}) ∧ (𝐵 · 𝑌) ∈ (𝑁‘{𝑌}))) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
206, 9, 14, 16, 19syl22anc 838 . 2 (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ∈ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
213, 4, 18, 1, 2, 7lsmpr 21003 . 2 (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑌})))
2220, 21eleqtrrd 2832 1 (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ∈ (𝑁‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4592  {cpr 4594  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  SubGrpcsubg 19059  LSSumclsm 19571  LModclmod 20773  LSpanclspn 20884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-lsp 20885
This theorem is referenced by:  lspexch  21046  baerlem3lem1  41708  baerlem5alem1  41709  baerlem5blem1  41710
  Copyright terms: Public domain W3C validator