| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrlsp3 | Structured version Visualization version GIF version | ||
| Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014.) |
| Ref | Expression |
|---|---|
| lkrlsp3.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrlsp3.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lkrlsp3.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrlsp3.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lkrlsp3 | ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lveclmod 21010 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 2 | 1 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → 𝑊 ∈ LMod) |
| 3 | simp2r 1201 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → 𝐺 ∈ 𝐹) | |
| 4 | lkrlsp3.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | lkrlsp3.k | . . . . . . . 8 ⊢ 𝐾 = (LKer‘𝑊) | |
| 6 | eqid 2729 | . . . . . . . 8 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 7 | 4, 5, 6 | lkrlss 39078 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) |
| 8 | 2, 3, 7 | syl2anc 584 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) |
| 9 | lkrlsp3.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 10 | 6, 9 | lspid 20885 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) → (𝑁‘(𝐾‘𝐺)) = (𝐾‘𝐺)) |
| 11 | 2, 8, 10 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘(𝐾‘𝐺)) = (𝐾‘𝐺)) |
| 12 | 11 | uneq1d 4118 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋})) = ((𝐾‘𝐺) ∪ (𝑁‘{𝑋}))) |
| 13 | 12 | fveq2d 6826 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋}))) = (𝑁‘((𝐾‘𝐺) ∪ (𝑁‘{𝑋})))) |
| 14 | lkrlsp3.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 15 | 14, 4, 5, 2, 3 | lkrssv 39079 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝐾‘𝐺) ⊆ 𝑉) |
| 16 | simp2l 1200 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → 𝑋 ∈ 𝑉) | |
| 17 | 16 | snssd 4760 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → {𝑋} ⊆ 𝑉) |
| 18 | 14, 9 | lspun 20890 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝐺) ⊆ 𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋})))) |
| 19 | 2, 15, 17, 18 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋})))) |
| 20 | 14, 6, 9 | lspsncl 20880 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 21 | 2, 16, 20 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 22 | eqid 2729 | . . . . 5 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 23 | 6, 9, 22 | lsmsp 20990 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝐺) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾‘𝐺) ∪ (𝑁‘{𝑋})))) |
| 24 | 2, 8, 21, 23 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾‘𝐺) ∪ (𝑁‘{𝑋})))) |
| 25 | 13, 19, 24 | 3eqtr4d 2774 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋}))) |
| 26 | 14, 9, 22, 4, 5 | lkrlsp2 39086 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = 𝑉) |
| 27 | 25, 26 | eqtrd 2764 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3901 ⊆ wss 3903 {csn 4577 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 LSSumclsm 19513 LModclmod 20763 LSubSpclss 20834 LSpanclspn 20874 LVecclvec 21006 LFnlclfn 39040 LKerclk 39068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cntz 19196 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lvec 21007 df-lfl 39041 df-lkr 39069 |
| This theorem is referenced by: lkrshp 39088 |
| Copyright terms: Public domain | W3C validator |