Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlsp3 Structured version   Visualization version   GIF version

Theorem lkrlsp3 36804
Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lkrlsp3.v 𝑉 = (Base‘𝑊)
lkrlsp3.n 𝑁 = (LSpan‘𝑊)
lkrlsp3.f 𝐹 = (LFnl‘𝑊)
lkrlsp3.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrlsp3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = 𝑉)

Proof of Theorem lkrlsp3
StepHypRef Expression
1 lveclmod 20097 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1135 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → 𝑊 ∈ LMod)
3 simp2r 1202 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → 𝐺𝐹)
4 lkrlsp3.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
5 lkrlsp3.k . . . . . . . 8 𝐾 = (LKer‘𝑊)
6 eqid 2736 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
74, 5, 6lkrlss 36795 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
82, 3, 7syl2anc 587 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
9 lkrlsp3.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
106, 9lspid 19973 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ∈ (LSubSp‘𝑊)) → (𝑁‘(𝐾𝐺)) = (𝐾𝐺))
112, 8, 10syl2anc 587 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘(𝐾𝐺)) = (𝐾𝐺))
1211uneq1d 4062 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝑁‘(𝐾𝐺)) ∪ (𝑁‘{𝑋})) = ((𝐾𝐺) ∪ (𝑁‘{𝑋})))
1312fveq2d 6699 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝑁‘(𝐾𝐺)) ∪ (𝑁‘{𝑋}))) = (𝑁‘((𝐾𝐺) ∪ (𝑁‘{𝑋}))))
14 lkrlsp3.v . . . . 5 𝑉 = (Base‘𝑊)
1514, 4, 5, 2, 3lkrssv 36796 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝐾𝐺) ⊆ 𝑉)
16 simp2l 1201 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → 𝑋𝑉)
1716snssd 4708 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → {𝑋} ⊆ 𝑉)
1814, 9lspun 19978 . . . 4 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ⊆ 𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾𝐺)) ∪ (𝑁‘{𝑋}))))
192, 15, 17, 18syl3anc 1373 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾𝐺)) ∪ (𝑁‘{𝑋}))))
2014, 6, 9lspsncl 19968 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
212, 16, 20syl2anc 587 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
22 eqid 2736 . . . . 5 (LSSum‘𝑊) = (LSSum‘𝑊)
236, 9, 22lsmsp 20077 . . . 4 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → ((𝐾𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾𝐺) ∪ (𝑁‘{𝑋}))))
242, 8, 21, 23syl3anc 1373 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾𝐺) ∪ (𝑁‘{𝑋}))))
2513, 19, 243eqtr4d 2781 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = ((𝐾𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})))
2614, 9, 22, 4, 5lkrlsp2 36803 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = 𝑉)
2725, 26eqtrd 2771 1 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  cun 3851  wss 3853  {csn 4527  cfv 6358  (class class class)co 7191  Basecbs 16666  LSSumclsm 18977  LModclmod 19853  LSubSpclss 19922  LSpanclspn 19962  LVecclvec 20093  LFnlclfn 36757  LKerclk 36785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-grp 18322  df-minusg 18323  df-sbg 18324  df-subg 18494  df-cntz 18665  df-lsm 18979  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-drng 19723  df-lmod 19855  df-lss 19923  df-lsp 19963  df-lvec 20094  df-lfl 36758  df-lkr 36786
This theorem is referenced by:  lkrshp  36805
  Copyright terms: Public domain W3C validator