Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrlsp3 | Structured version Visualization version GIF version |
Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014.) |
Ref | Expression |
---|---|
lkrlsp3.v | ⊢ 𝑉 = (Base‘𝑊) |
lkrlsp3.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lkrlsp3.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkrlsp3.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkrlsp3 | ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lveclmod 20283 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
2 | 1 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → 𝑊 ∈ LMod) |
3 | simp2r 1198 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → 𝐺 ∈ 𝐹) | |
4 | lkrlsp3.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | lkrlsp3.k | . . . . . . . 8 ⊢ 𝐾 = (LKer‘𝑊) | |
6 | eqid 2738 | . . . . . . . 8 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
7 | 4, 5, 6 | lkrlss 37036 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) |
8 | 2, 3, 7 | syl2anc 583 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) |
9 | lkrlsp3.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
10 | 6, 9 | lspid 20159 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) → (𝑁‘(𝐾‘𝐺)) = (𝐾‘𝐺)) |
11 | 2, 8, 10 | syl2anc 583 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘(𝐾‘𝐺)) = (𝐾‘𝐺)) |
12 | 11 | uneq1d 4092 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋})) = ((𝐾‘𝐺) ∪ (𝑁‘{𝑋}))) |
13 | 12 | fveq2d 6760 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋}))) = (𝑁‘((𝐾‘𝐺) ∪ (𝑁‘{𝑋})))) |
14 | lkrlsp3.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
15 | 14, 4, 5, 2, 3 | lkrssv 37037 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝐾‘𝐺) ⊆ 𝑉) |
16 | simp2l 1197 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → 𝑋 ∈ 𝑉) | |
17 | 16 | snssd 4739 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → {𝑋} ⊆ 𝑉) |
18 | 14, 9 | lspun 20164 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝐺) ⊆ 𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋})))) |
19 | 2, 15, 17, 18 | syl3anc 1369 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋})))) |
20 | 14, 6, 9 | lspsncl 20154 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
21 | 2, 16, 20 | syl2anc 583 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
22 | eqid 2738 | . . . . 5 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
23 | 6, 9, 22 | lsmsp 20263 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝐺) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾‘𝐺) ∪ (𝑁‘{𝑋})))) |
24 | 2, 8, 21, 23 | syl3anc 1369 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾‘𝐺) ∪ (𝑁‘{𝑋})))) |
25 | 13, 19, 24 | 3eqtr4d 2788 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋}))) |
26 | 14, 9, 22, 4, 5 | lkrlsp2 37044 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = 𝑉) |
27 | 25, 26 | eqtrd 2778 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 {csn 4558 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 LSSumclsm 19154 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 LVecclvec 20279 LFnlclfn 36998 LKerclk 37026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lfl 36999 df-lkr 37027 |
This theorem is referenced by: lkrshp 37046 |
Copyright terms: Public domain | W3C validator |