| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrlsp3 | Structured version Visualization version GIF version | ||
| Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014.) |
| Ref | Expression |
|---|---|
| lkrlsp3.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrlsp3.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lkrlsp3.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrlsp3.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lkrlsp3 | ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lveclmod 20989 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 2 | 1 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → 𝑊 ∈ LMod) |
| 3 | simp2r 1201 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → 𝐺 ∈ 𝐹) | |
| 4 | lkrlsp3.f | . . . . . . . 8 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | lkrlsp3.k | . . . . . . . 8 ⊢ 𝐾 = (LKer‘𝑊) | |
| 6 | eqid 2729 | . . . . . . . 8 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 7 | 4, 5, 6 | lkrlss 39061 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) |
| 8 | 2, 3, 7 | syl2anc 584 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) |
| 9 | lkrlsp3.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 10 | 6, 9 | lspid 20864 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) → (𝑁‘(𝐾‘𝐺)) = (𝐾‘𝐺)) |
| 11 | 2, 8, 10 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘(𝐾‘𝐺)) = (𝐾‘𝐺)) |
| 12 | 11 | uneq1d 4126 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋})) = ((𝐾‘𝐺) ∪ (𝑁‘{𝑋}))) |
| 13 | 12 | fveq2d 6844 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋}))) = (𝑁‘((𝐾‘𝐺) ∪ (𝑁‘{𝑋})))) |
| 14 | lkrlsp3.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 15 | 14, 4, 5, 2, 3 | lkrssv 39062 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝐾‘𝐺) ⊆ 𝑉) |
| 16 | simp2l 1200 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → 𝑋 ∈ 𝑉) | |
| 17 | 16 | snssd 4769 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → {𝑋} ⊆ 𝑉) |
| 18 | 14, 9 | lspun 20869 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝐺) ⊆ 𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋})))) |
| 19 | 2, 15, 17, 18 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾‘𝐺)) ∪ (𝑁‘{𝑋})))) |
| 20 | 14, 6, 9 | lspsncl 20859 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 21 | 2, 16, 20 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 22 | eqid 2729 | . . . . 5 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 23 | 6, 9, 22 | lsmsp 20969 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝐺) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾‘𝐺) ∪ (𝑁‘{𝑋})))) |
| 24 | 2, 8, 21, 23 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾‘𝐺) ∪ (𝑁‘{𝑋})))) |
| 25 | 13, 19, 24 | 3eqtr4d 2774 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋}))) |
| 26 | 14, 9, 22, 4, 5 | lkrlsp2 39069 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → ((𝐾‘𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = 𝑉) |
| 27 | 25, 26 | eqtrd 2764 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑋 ∈ (𝐾‘𝐺)) → (𝑁‘((𝐾‘𝐺) ∪ {𝑋})) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 ⊆ wss 3911 {csn 4585 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 LSSumclsm 19540 LModclmod 20742 LSubSpclss 20813 LSpanclspn 20853 LVecclvec 20985 LFnlclfn 39023 LKerclk 39051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19225 df-lsm 19542 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-drng 20616 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lvec 20986 df-lfl 39024 df-lkr 39052 |
| This theorem is referenced by: lkrshp 39071 |
| Copyright terms: Public domain | W3C validator |