Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlsp3 Structured version   Visualization version   GIF version

Theorem lkrlsp3 39070
Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lkrlsp3.v 𝑉 = (Base‘𝑊)
lkrlsp3.n 𝑁 = (LSpan‘𝑊)
lkrlsp3.f 𝐹 = (LFnl‘𝑊)
lkrlsp3.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrlsp3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = 𝑉)

Proof of Theorem lkrlsp3
StepHypRef Expression
1 lveclmod 20989 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1133 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → 𝑊 ∈ LMod)
3 simp2r 1201 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → 𝐺𝐹)
4 lkrlsp3.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
5 lkrlsp3.k . . . . . . . 8 𝐾 = (LKer‘𝑊)
6 eqid 2729 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
74, 5, 6lkrlss 39061 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
82, 3, 7syl2anc 584 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
9 lkrlsp3.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
106, 9lspid 20864 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ∈ (LSubSp‘𝑊)) → (𝑁‘(𝐾𝐺)) = (𝐾𝐺))
112, 8, 10syl2anc 584 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘(𝐾𝐺)) = (𝐾𝐺))
1211uneq1d 4126 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝑁‘(𝐾𝐺)) ∪ (𝑁‘{𝑋})) = ((𝐾𝐺) ∪ (𝑁‘{𝑋})))
1312fveq2d 6844 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝑁‘(𝐾𝐺)) ∪ (𝑁‘{𝑋}))) = (𝑁‘((𝐾𝐺) ∪ (𝑁‘{𝑋}))))
14 lkrlsp3.v . . . . 5 𝑉 = (Base‘𝑊)
1514, 4, 5, 2, 3lkrssv 39062 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝐾𝐺) ⊆ 𝑉)
16 simp2l 1200 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → 𝑋𝑉)
1716snssd 4769 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → {𝑋} ⊆ 𝑉)
1814, 9lspun 20869 . . . 4 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ⊆ 𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾𝐺)) ∪ (𝑁‘{𝑋}))))
192, 15, 17, 18syl3anc 1373 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾𝐺)) ∪ (𝑁‘{𝑋}))))
2014, 6, 9lspsncl 20859 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
212, 16, 20syl2anc 584 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
22 eqid 2729 . . . . 5 (LSSum‘𝑊) = (LSSum‘𝑊)
236, 9, 22lsmsp 20969 . . . 4 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → ((𝐾𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾𝐺) ∪ (𝑁‘{𝑋}))))
242, 8, 21, 23syl3anc 1373 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾𝐺) ∪ (𝑁‘{𝑋}))))
2513, 19, 243eqtr4d 2774 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = ((𝐾𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})))
2614, 9, 22, 4, 5lkrlsp2 39069 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = 𝑉)
2725, 26eqtrd 2764 1 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3909  wss 3911  {csn 4585  cfv 6499  (class class class)co 7369  Basecbs 17155  LSSumclsm 19540  LModclmod 20742  LSubSpclss 20813  LSpanclspn 20853  LVecclvec 20985  LFnlclfn 39023  LKerclk 39051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19225  df-lsm 19542  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lvec 20986  df-lfl 39024  df-lkr 39052
This theorem is referenced by:  lkrshp  39071
  Copyright terms: Public domain W3C validator