Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlsp3 Structured version   Visualization version   GIF version

Theorem lkrlsp3 39087
Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lkrlsp3.v 𝑉 = (Base‘𝑊)
lkrlsp3.n 𝑁 = (LSpan‘𝑊)
lkrlsp3.f 𝐹 = (LFnl‘𝑊)
lkrlsp3.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrlsp3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = 𝑉)

Proof of Theorem lkrlsp3
StepHypRef Expression
1 lveclmod 21010 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1133 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → 𝑊 ∈ LMod)
3 simp2r 1201 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → 𝐺𝐹)
4 lkrlsp3.f . . . . . . . 8 𝐹 = (LFnl‘𝑊)
5 lkrlsp3.k . . . . . . . 8 𝐾 = (LKer‘𝑊)
6 eqid 2729 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
74, 5, 6lkrlss 39078 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
82, 3, 7syl2anc 584 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
9 lkrlsp3.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
106, 9lspid 20885 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ∈ (LSubSp‘𝑊)) → (𝑁‘(𝐾𝐺)) = (𝐾𝐺))
112, 8, 10syl2anc 584 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘(𝐾𝐺)) = (𝐾𝐺))
1211uneq1d 4118 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝑁‘(𝐾𝐺)) ∪ (𝑁‘{𝑋})) = ((𝐾𝐺) ∪ (𝑁‘{𝑋})))
1312fveq2d 6826 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝑁‘(𝐾𝐺)) ∪ (𝑁‘{𝑋}))) = (𝑁‘((𝐾𝐺) ∪ (𝑁‘{𝑋}))))
14 lkrlsp3.v . . . . 5 𝑉 = (Base‘𝑊)
1514, 4, 5, 2, 3lkrssv 39079 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝐾𝐺) ⊆ 𝑉)
16 simp2l 1200 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → 𝑋𝑉)
1716snssd 4760 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → {𝑋} ⊆ 𝑉)
1814, 9lspun 20890 . . . 4 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ⊆ 𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾𝐺)) ∪ (𝑁‘{𝑋}))))
192, 15, 17, 18syl3anc 1373 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = (𝑁‘((𝑁‘(𝐾𝐺)) ∪ (𝑁‘{𝑋}))))
2014, 6, 9lspsncl 20880 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
212, 16, 20syl2anc 584 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
22 eqid 2729 . . . . 5 (LSSum‘𝑊) = (LSSum‘𝑊)
236, 9, 22lsmsp 20990 . . . 4 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → ((𝐾𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾𝐺) ∪ (𝑁‘{𝑋}))))
242, 8, 21, 23syl3anc 1373 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = (𝑁‘((𝐾𝐺) ∪ (𝑁‘{𝑋}))))
2513, 19, 243eqtr4d 2774 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = ((𝐾𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})))
2614, 9, 22, 4, 5lkrlsp2 39086 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → ((𝐾𝐺)(LSSum‘𝑊)(𝑁‘{𝑋})) = 𝑉)
2725, 26eqtrd 2764 1 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ ¬ 𝑋 ∈ (𝐾𝐺)) → (𝑁‘((𝐾𝐺) ∪ {𝑋})) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3901  wss 3903  {csn 4577  cfv 6482  (class class class)co 7349  Basecbs 17120  LSSumclsm 19513  LModclmod 20763  LSubSpclss 20834  LSpanclspn 20874  LVecclvec 21006  LFnlclfn 39040  LKerclk 39068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007  df-lfl 39041  df-lkr 39069
This theorem is referenced by:  lkrshp  39088
  Copyright terms: Public domain W3C validator