Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  filnm Structured version   Visualization version   GIF version

Theorem filnm 41603
Description: Finite left modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
filnm.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
filnm ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → 𝑊 ∈ LNoeM)

Proof of Theorem filnm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 483 . 2 ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → 𝑊 ∈ LMod)
2 filnm.b . . . . . . . 8 𝐵 = (Base‘𝑊)
3 eqid 2731 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
42, 3lssss 20496 . . . . . . 7 (𝑎 ∈ (LSubSp‘𝑊) → 𝑎𝐵)
54adantl 482 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎𝐵)
6 velpw 4601 . . . . . 6 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
75, 6sylibr 233 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎 ∈ 𝒫 𝐵)
8 simplr 767 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝐵 ∈ Fin)
9 ssfi 9156 . . . . . 6 ((𝐵 ∈ Fin ∧ 𝑎𝐵) → 𝑎 ∈ Fin)
108, 5, 9syl2anc 584 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎 ∈ Fin)
117, 10elind 4190 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎 ∈ (𝒫 𝐵 ∩ Fin))
12 eqid 2731 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
133, 12lspid 20542 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑎 ∈ (LSubSp‘𝑊)) → ((LSpan‘𝑊)‘𝑎) = 𝑎)
1413adantlr 713 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → ((LSpan‘𝑊)‘𝑎) = 𝑎)
1514eqcomd 2737 . . . 4 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎 = ((LSpan‘𝑊)‘𝑎))
16 fveq2 6878 . . . . 5 (𝑏 = 𝑎 → ((LSpan‘𝑊)‘𝑏) = ((LSpan‘𝑊)‘𝑎))
1716rspceeqv 3629 . . . 4 ((𝑎 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑎 = ((LSpan‘𝑊)‘𝑎)) → ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑎 = ((LSpan‘𝑊)‘𝑏))
1811, 15, 17syl2anc 584 . . 3 (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑎 = ((LSpan‘𝑊)‘𝑏))
1918ralrimiva 3145 . 2 ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → ∀𝑎 ∈ (LSubSp‘𝑊)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑎 = ((LSpan‘𝑊)‘𝑏))
202, 3, 12islnm2 41591 . 2 (𝑊 ∈ LNoeM ↔ (𝑊 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑊)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑎 = ((LSpan‘𝑊)‘𝑏)))
211, 19, 20sylanbrc 583 1 ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → 𝑊 ∈ LNoeM)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3060  wrex 3069  cin 3943  wss 3944  𝒫 cpw 4596  cfv 6532  Fincfn 8922  Basecbs 17126  LModclmod 20420  LSubSpclss 20491  LSpanclspn 20531  LNoeMclnm 41588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-sca 17195  df-vsca 17196  df-0g 17369  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-grp 18797  df-minusg 18798  df-sbg 18799  df-subg 18975  df-mgp 19947  df-ur 19964  df-ring 20016  df-lmod 20422  df-lss 20492  df-lsp 20532  df-lfig 41581  df-lnm 41589
This theorem is referenced by:  pwslnmlem0  41604
  Copyright terms: Public domain W3C validator