![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > filnm | Structured version Visualization version GIF version |
Description: Finite left modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
filnm.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
filnm | ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → 𝑊 ∈ LNoeM) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → 𝑊 ∈ LMod) | |
2 | filnm.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑊) | |
3 | eqid 2778 | . . . . . . . 8 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
4 | 2, 3 | lssss 19340 | . . . . . . 7 ⊢ (𝑎 ∈ (LSubSp‘𝑊) → 𝑎 ⊆ 𝐵) |
5 | 4 | adantl 475 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎 ⊆ 𝐵) |
6 | selpw 4386 | . . . . . 6 ⊢ (𝑎 ∈ 𝒫 𝐵 ↔ 𝑎 ⊆ 𝐵) | |
7 | 5, 6 | sylibr 226 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎 ∈ 𝒫 𝐵) |
8 | simplr 759 | . . . . . 6 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝐵 ∈ Fin) | |
9 | ssfi 8470 | . . . . . 6 ⊢ ((𝐵 ∈ Fin ∧ 𝑎 ⊆ 𝐵) → 𝑎 ∈ Fin) | |
10 | 8, 5, 9 | syl2anc 579 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎 ∈ Fin) |
11 | 7, 10 | elind 4021 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎 ∈ (𝒫 𝐵 ∩ Fin)) |
12 | eqid 2778 | . . . . . . 7 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
13 | 3, 12 | lspid 19388 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑎 ∈ (LSubSp‘𝑊)) → ((LSpan‘𝑊)‘𝑎) = 𝑎) |
14 | 13 | adantlr 705 | . . . . 5 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → ((LSpan‘𝑊)‘𝑎) = 𝑎) |
15 | 14 | eqcomd 2784 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → 𝑎 = ((LSpan‘𝑊)‘𝑎)) |
16 | fveq2 6448 | . . . . 5 ⊢ (𝑏 = 𝑎 → ((LSpan‘𝑊)‘𝑏) = ((LSpan‘𝑊)‘𝑎)) | |
17 | 16 | rspceeqv 3529 | . . . 4 ⊢ ((𝑎 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑎 = ((LSpan‘𝑊)‘𝑎)) → ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑎 = ((LSpan‘𝑊)‘𝑏)) |
18 | 11, 15, 17 | syl2anc 579 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) ∧ 𝑎 ∈ (LSubSp‘𝑊)) → ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑎 = ((LSpan‘𝑊)‘𝑏)) |
19 | 18 | ralrimiva 3148 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → ∀𝑎 ∈ (LSubSp‘𝑊)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑎 = ((LSpan‘𝑊)‘𝑏)) |
20 | 2, 3, 12 | islnm2 38621 | . 2 ⊢ (𝑊 ∈ LNoeM ↔ (𝑊 ∈ LMod ∧ ∀𝑎 ∈ (LSubSp‘𝑊)∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)𝑎 = ((LSpan‘𝑊)‘𝑏))) |
21 | 1, 19, 20 | sylanbrc 578 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ Fin) → 𝑊 ∈ LNoeM) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ∃wrex 3091 ∩ cin 3791 ⊆ wss 3792 𝒫 cpw 4379 ‘cfv 6137 Fincfn 8243 Basecbs 16266 LModclmod 19266 LSubSpclss 19335 LSpanclspn 19377 LNoeMclnm 38618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-sca 16365 df-vsca 16366 df-0g 16499 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-grp 17823 df-minusg 17824 df-sbg 17825 df-subg 17986 df-mgp 18888 df-ur 18900 df-ring 18947 df-lmod 19268 df-lss 19336 df-lsp 19378 df-lfig 38611 df-lnm 38619 |
This theorem is referenced by: pwslnmlem0 38634 |
Copyright terms: Public domain | W3C validator |