Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2098
class class class wbr 5152 (class class class)co 7426
ℝcr 11147 + caddc 11151 < clt 11288 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-ltxr 11293 |
This theorem is referenced by: nnne0
12286 fzoaddel
13727 elincfzoext
13732 fladdz
13832 fzsdom2
14429 sadcaddlem
16441 iserodd
16813 4sqlem12
16934 efif1olem1
26504 atanlogsublem
26875 subfacval3
34840 poimirlem15
37149 itg2addnclem3
37187 aks4d1p1p6
41584 aks4d1p1p5
41586 fltnlta
42136 3cubeslem1
42153 rmspecfund
42378 jm2.24nn
42429 ltadd12dd
44772 infleinflem2
44800 iooshift
44954 iblspltprt
45408 itgspltprt
45414 stirlinglem5
45513 dirkercncflem1
45538 fourierdlem19
45561 fourierdlem35
45577 fourierdlem41
45583 fourierdlem47
45588 fourierdlem48
45589 fourierdlem49
45590 fourierdlem51
45592 fourierdlem64
45605 fourierdlem79
45620 fourierdlem81
45622 fourierdlem92
45633 fourierdlem112
45653 sqwvfoura
45663 sqwvfourb
45664 fouriersw
45666 smflimlem4
46209 2pwp1prm
46976 |