MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltadd1dd Structured version   Visualization version   GIF version

Theorem ltadd1dd 11789
Description: Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
ltadd1dd.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ltadd1dd (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶))

Proof of Theorem ltadd1dd
StepHypRef Expression
1 ltadd1dd.4 . 2 (𝜑𝐴 < 𝐵)
2 leidd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltnegd.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltadd1d.3 . . 3 (𝜑𝐶 ∈ ℝ)
52, 3, 4ltadd1d 11771 . 2 (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)))
61, 5mpbid 232 1 (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067   + caddc 11071   < clt 11208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213
This theorem is referenced by:  nnne0  12220  fzoaddel  13678  elincfzoext  13684  fladdz  13787  fzsdom2  14393  sadcaddlem  16427  iserodd  16806  4sqlem12  16927  efif1olem1  26451  atanlogsublem  26825  subfacval3  35176  poimirlem15  37629  itg2addnclem3  37667  aks4d1p1p6  42061  aks4d1p1p5  42063  fltnlta  42651  3cubeslem1  42672  rmspecfund  42897  jm2.24nn  42948  ltadd12dd  45339  infleinflem2  45367  iooshift  45520  iblspltprt  45971  itgspltprt  45977  stirlinglem5  46076  dirkercncflem1  46101  fourierdlem19  46124  fourierdlem35  46140  fourierdlem41  46146  fourierdlem47  46151  fourierdlem48  46152  fourierdlem49  46153  fourierdlem51  46155  fourierdlem64  46168  fourierdlem79  46183  fourierdlem81  46185  fourierdlem92  46196  fourierdlem112  46216  sqwvfoura  46226  sqwvfourb  46227  fouriersw  46229  smflimlem4  46772  ormkglobd  46873  2pwp1prm  47590
  Copyright terms: Public domain W3C validator