Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltadd1dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltadd1dd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltadd1dd | ⊢ (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | ltadd1d 11498 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶))) |
6 | 1, 5 | mpbid 231 | 1 ⊢ (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 + caddc 10805 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: nnne0 11937 fzoaddel 13368 elincfzoext 13373 fladdz 13473 fzsdom2 14071 sadcaddlem 16092 iserodd 16464 4sqlem12 16585 efif1olem1 25603 atanlogsublem 25970 subfacval3 33051 poimirlem15 35719 itg2addnclem3 35757 aks4d1p1p6 40009 aks4d1p1p5 40011 fltnlta 40416 3cubeslem1 40422 rmspecfund 40647 jm2.24nn 40697 ltadd12dd 42772 infleinflem2 42800 iooshift 42950 iblspltprt 43404 itgspltprt 43410 stirlinglem5 43509 dirkercncflem1 43534 fourierdlem19 43557 fourierdlem35 43573 fourierdlem41 43579 fourierdlem47 43584 fourierdlem48 43585 fourierdlem49 43586 fourierdlem51 43588 fourierdlem64 43601 fourierdlem79 43616 fourierdlem81 43618 fourierdlem92 43629 fourierdlem112 43649 sqwvfoura 43659 sqwvfourb 43660 fouriersw 43662 smflimlem4 44196 2pwp1prm 44929 |
Copyright terms: Public domain | W3C validator |