| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltadd1dd | Structured version Visualization version GIF version | ||
| Description: Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltadd1dd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| ltadd1dd | ⊢ (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | ltadd1d 11771 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 + caddc 11071 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 |
| This theorem is referenced by: nnne0 12220 fzoaddel 13678 elincfzoext 13684 fladdz 13787 fzsdom2 14393 sadcaddlem 16427 iserodd 16806 4sqlem12 16927 efif1olem1 26451 atanlogsublem 26825 subfacval3 35176 poimirlem15 37629 itg2addnclem3 37667 aks4d1p1p6 42061 aks4d1p1p5 42063 fltnlta 42651 3cubeslem1 42672 rmspecfund 42897 jm2.24nn 42948 ltadd12dd 45339 infleinflem2 45367 iooshift 45520 iblspltprt 45971 itgspltprt 45977 stirlinglem5 46076 dirkercncflem1 46101 fourierdlem19 46124 fourierdlem35 46140 fourierdlem41 46146 fourierdlem47 46151 fourierdlem48 46152 fourierdlem49 46153 fourierdlem51 46155 fourierdlem64 46168 fourierdlem79 46183 fourierdlem81 46185 fourierdlem92 46196 fourierdlem112 46216 sqwvfoura 46226 sqwvfourb 46227 fouriersw 46229 smflimlem4 46772 ormkglobd 46873 2pwp1prm 47590 |
| Copyright terms: Public domain | W3C validator |