MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltadd1dd Structured version   Visualization version   GIF version

Theorem ltadd1dd 11516
Description: Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
ltadd1dd.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ltadd1dd (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶))

Proof of Theorem ltadd1dd
StepHypRef Expression
1 ltadd1dd.4 . 2 (𝜑𝐴 < 𝐵)
2 leidd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltnegd.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 ltadd1d.3 . . 3 (𝜑𝐶 ∈ ℝ)
52, 3, 4ltadd1d 11498 . 2 (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)))
61, 5mpbid 231 1 (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801   + caddc 10805   < clt 10940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945
This theorem is referenced by:  nnne0  11937  fzoaddel  13368  elincfzoext  13373  fladdz  13473  fzsdom2  14071  sadcaddlem  16092  iserodd  16464  4sqlem12  16585  efif1olem1  25603  atanlogsublem  25970  subfacval3  33051  poimirlem15  35719  itg2addnclem3  35757  aks4d1p1p6  40009  aks4d1p1p5  40011  fltnlta  40416  3cubeslem1  40422  rmspecfund  40647  jm2.24nn  40697  ltadd12dd  42772  infleinflem2  42800  iooshift  42950  iblspltprt  43404  itgspltprt  43410  stirlinglem5  43509  dirkercncflem1  43534  fourierdlem19  43557  fourierdlem35  43573  fourierdlem41  43579  fourierdlem47  43584  fourierdlem48  43585  fourierdlem49  43586  fourierdlem51  43588  fourierdlem64  43601  fourierdlem79  43616  fourierdlem81  43618  fourierdlem92  43629  fourierdlem112  43649  sqwvfoura  43659  sqwvfourb  43660  fouriersw  43662  smflimlem4  44196  2pwp1prm  44929
  Copyright terms: Public domain W3C validator