Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltadd2dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | ltadd2d 11131 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
6 | 1, 5 | mpbid 231 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 + caddc 10874 < clt 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-addrcl 10932 ax-pre-lttri 10945 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 |
This theorem is referenced by: zltaddlt1le 13237 2tnp1ge0ge0 13549 ccatrn 14294 eirrlem 15913 prmreclem5 16621 iccntr 23984 icccmplem2 23986 ivthlem2 24616 uniioombllem3 24749 opnmbllem 24765 dvcnvre 25183 cosordlem 25686 efif1olem2 25699 atanlogaddlem 26063 pntibndlem2 26739 pntlemr 26750 dya2icoseg 32244 opnmbllem0 35813 fltnltalem 40499 binomcxplemdvbinom 41971 zltlesub 42824 supxrge 42877 ltadd12dd 42882 xrralrecnnle 42922 0ellimcdiv 43190 climleltrp 43217 ioodvbdlimc1lem2 43473 stoweidlem11 43552 stoweidlem14 43555 stoweidlem26 43567 stoweidlem44 43585 dirkertrigeqlem3 43641 dirkercncflem1 43644 dirkercncflem2 43645 fourierdlem4 43652 fourierdlem10 43658 fourierdlem28 43676 fourierdlem40 43688 fourierdlem50 43697 fourierdlem57 43704 fourierdlem59 43706 fourierdlem60 43707 fourierdlem61 43708 fourierdlem68 43715 fourierdlem74 43721 fourierdlem75 43722 fourierdlem76 43723 fourierdlem78 43725 fourierdlem79 43726 fourierdlem84 43731 fourierdlem93 43740 fourierdlem111 43758 fouriersw 43772 smfaddlem1 44298 smflimlem3 44308 |
Copyright terms: Public domain | W3C validator |