Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltadd2dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | ltadd2d 11061 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
6 | 1, 5 | mpbid 231 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 + caddc 10805 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-addrcl 10863 ax-pre-lttri 10876 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: zltaddlt1le 13166 2tnp1ge0ge0 13477 ccatrn 14222 eirrlem 15841 prmreclem5 16549 iccntr 23890 icccmplem2 23892 ivthlem2 24521 uniioombllem3 24654 opnmbllem 24670 dvcnvre 25088 cosordlem 25591 efif1olem2 25604 atanlogaddlem 25968 pntibndlem2 26644 pntlemr 26655 dya2icoseg 32144 opnmbllem0 35740 fltnltalem 40415 binomcxplemdvbinom 41860 zltlesub 42713 supxrge 42767 ltadd12dd 42772 xrralrecnnle 42812 0ellimcdiv 43080 climleltrp 43107 ioodvbdlimc1lem2 43363 stoweidlem11 43442 stoweidlem14 43445 stoweidlem26 43457 stoweidlem44 43475 dirkertrigeqlem3 43531 dirkercncflem1 43534 dirkercncflem2 43535 fourierdlem4 43542 fourierdlem10 43548 fourierdlem28 43566 fourierdlem40 43578 fourierdlem50 43587 fourierdlem57 43594 fourierdlem59 43596 fourierdlem60 43597 fourierdlem61 43598 fourierdlem68 43605 fourierdlem74 43611 fourierdlem75 43612 fourierdlem76 43613 fourierdlem78 43615 fourierdlem79 43616 fourierdlem84 43621 fourierdlem93 43630 fourierdlem111 43648 fouriersw 43662 smfaddlem1 44185 smflimlem3 44195 |
Copyright terms: Public domain | W3C validator |