| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltadd2dd | Structured version Visualization version GIF version | ||
| Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| ltadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | ltadd2d 11330 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 + caddc 11071 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-addrcl 11129 ax-pre-lttri 11142 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 |
| This theorem is referenced by: zltaddlt1le 13466 2tnp1ge0ge0 13791 ccatrn 14554 eirrlem 16172 prmreclem5 16891 iccntr 24710 icccmplem2 24712 ivthlem2 25353 uniioombllem3 25486 opnmbllem 25502 dvcnvre 25924 cosordlem 26439 efif1olem2 26452 atanlogaddlem 26823 pntibndlem2 27502 pntlemr 27513 dya2icoseg 34268 opnmbllem0 37650 posbezout 42088 fltnltalem 42650 binomcxplemdvbinom 44342 zltlesub 45283 supxrge 45334 ltadd12dd 45339 xrralrecnnle 45379 0ellimcdiv 45647 climleltrp 45674 ioodvbdlimc1lem2 45930 stoweidlem11 46009 stoweidlem14 46012 stoweidlem26 46024 stoweidlem44 46042 dirkertrigeqlem3 46098 dirkercncflem1 46101 dirkercncflem2 46102 fourierdlem4 46109 fourierdlem10 46115 fourierdlem28 46133 fourierdlem40 46145 fourierdlem50 46154 fourierdlem57 46161 fourierdlem59 46163 fourierdlem60 46164 fourierdlem61 46165 fourierdlem68 46172 fourierdlem74 46178 fourierdlem75 46179 fourierdlem76 46180 fourierdlem78 46182 fourierdlem79 46183 fourierdlem84 46188 fourierdlem93 46197 fourierdlem111 46215 fouriersw 46229 smfaddlem1 46761 smflimlem3 46771 |
| Copyright terms: Public domain | W3C validator |