| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltadd2dd | Structured version Visualization version GIF version | ||
| Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| ltadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | ltadd2d 11306 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 + caddc 11047 < clt 11184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-addrcl 11105 ax-pre-lttri 11118 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 |
| This theorem is referenced by: zltaddlt1le 13442 2tnp1ge0ge0 13767 ccatrn 14530 eirrlem 16148 prmreclem5 16867 iccntr 24743 icccmplem2 24745 ivthlem2 25386 uniioombllem3 25519 opnmbllem 25535 dvcnvre 25957 cosordlem 26472 efif1olem2 26485 atanlogaddlem 26856 pntibndlem2 27535 pntlemr 27546 dya2icoseg 34261 opnmbllem0 37643 posbezout 42081 fltnltalem 42643 binomcxplemdvbinom 44335 zltlesub 45276 supxrge 45327 ltadd12dd 45332 xrralrecnnle 45372 0ellimcdiv 45640 climleltrp 45667 ioodvbdlimc1lem2 45923 stoweidlem11 46002 stoweidlem14 46005 stoweidlem26 46017 stoweidlem44 46035 dirkertrigeqlem3 46091 dirkercncflem1 46094 dirkercncflem2 46095 fourierdlem4 46102 fourierdlem10 46108 fourierdlem28 46126 fourierdlem40 46138 fourierdlem50 46147 fourierdlem57 46154 fourierdlem59 46156 fourierdlem60 46157 fourierdlem61 46158 fourierdlem68 46165 fourierdlem74 46171 fourierdlem75 46172 fourierdlem76 46173 fourierdlem78 46175 fourierdlem79 46176 fourierdlem84 46181 fourierdlem93 46190 fourierdlem111 46208 fouriersw 46222 smfaddlem1 46754 smflimlem3 46764 |
| Copyright terms: Public domain | W3C validator |