| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltadd2dd | Structured version Visualization version GIF version | ||
| Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| ltadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | ltadd2d 11396 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 + caddc 11137 < clt 11274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-addrcl 11195 ax-pre-lttri 11208 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 |
| This theorem is referenced by: zltaddlt1le 13527 2tnp1ge0ge0 13851 ccatrn 14612 eirrlem 16227 prmreclem5 16945 iccntr 24766 icccmplem2 24768 ivthlem2 25410 uniioombllem3 25543 opnmbllem 25559 dvcnvre 25981 cosordlem 26496 efif1olem2 26509 atanlogaddlem 26880 pntibndlem2 27559 pntlemr 27570 dya2icoseg 34314 opnmbllem0 37685 posbezout 42118 fltnltalem 42652 binomcxplemdvbinom 44344 zltlesub 45281 supxrge 45332 ltadd12dd 45337 xrralrecnnle 45377 0ellimcdiv 45645 climleltrp 45672 ioodvbdlimc1lem2 45928 stoweidlem11 46007 stoweidlem14 46010 stoweidlem26 46022 stoweidlem44 46040 dirkertrigeqlem3 46096 dirkercncflem1 46099 dirkercncflem2 46100 fourierdlem4 46107 fourierdlem10 46113 fourierdlem28 46131 fourierdlem40 46143 fourierdlem50 46152 fourierdlem57 46159 fourierdlem59 46161 fourierdlem60 46162 fourierdlem61 46163 fourierdlem68 46170 fourierdlem74 46176 fourierdlem75 46177 fourierdlem76 46178 fourierdlem78 46180 fourierdlem79 46181 fourierdlem84 46186 fourierdlem93 46195 fourierdlem111 46213 fouriersw 46227 smfaddlem1 46759 smflimlem3 46769 |
| Copyright terms: Public domain | W3C validator |