![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltadd2dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | ltadd2d 11415 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 + caddc 11156 < clt 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-addrcl 11214 ax-pre-lttri 11227 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 |
This theorem is referenced by: zltaddlt1le 13542 2tnp1ge0ge0 13866 ccatrn 14624 eirrlem 16237 prmreclem5 16954 iccntr 24857 icccmplem2 24859 ivthlem2 25501 uniioombllem3 25634 opnmbllem 25650 dvcnvre 26073 cosordlem 26587 efif1olem2 26600 atanlogaddlem 26971 pntibndlem2 27650 pntlemr 27661 dya2icoseg 34259 opnmbllem0 37643 posbezout 42082 fltnltalem 42649 binomcxplemdvbinom 44349 zltlesub 45236 supxrge 45288 ltadd12dd 45293 xrralrecnnle 45333 0ellimcdiv 45605 climleltrp 45632 ioodvbdlimc1lem2 45888 stoweidlem11 45967 stoweidlem14 45970 stoweidlem26 45982 stoweidlem44 46000 dirkertrigeqlem3 46056 dirkercncflem1 46059 dirkercncflem2 46060 fourierdlem4 46067 fourierdlem10 46073 fourierdlem28 46091 fourierdlem40 46103 fourierdlem50 46112 fourierdlem57 46119 fourierdlem59 46121 fourierdlem60 46122 fourierdlem61 46123 fourierdlem68 46130 fourierdlem74 46136 fourierdlem75 46137 fourierdlem76 46138 fourierdlem78 46140 fourierdlem79 46141 fourierdlem84 46146 fourierdlem93 46155 fourierdlem111 46173 fouriersw 46187 smfaddlem1 46719 smflimlem3 46729 |
Copyright terms: Public domain | W3C validator |