| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltadd2dd | Structured version Visualization version GIF version | ||
| Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| ltadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | ltadd2d 11269 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 + caddc 11009 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-addrcl 11067 ax-pre-lttri 11080 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 |
| This theorem is referenced by: zltaddlt1le 13405 2tnp1ge0ge0 13733 ccatrn 14497 eirrlem 16113 prmreclem5 16832 iccntr 24737 icccmplem2 24739 ivthlem2 25380 uniioombllem3 25513 opnmbllem 25529 dvcnvre 25951 cosordlem 26466 efif1olem2 26479 atanlogaddlem 26850 pntibndlem2 27529 pntlemr 27540 dya2icoseg 34290 opnmbllem0 37706 posbezout 42203 fltnltalem 42765 binomcxplemdvbinom 44456 zltlesub 45396 supxrge 45447 ltadd12dd 45452 xrralrecnnle 45491 0ellimcdiv 45757 climleltrp 45784 ioodvbdlimc1lem2 46040 stoweidlem11 46119 stoweidlem14 46122 stoweidlem26 46134 stoweidlem44 46152 dirkertrigeqlem3 46208 dirkercncflem1 46211 dirkercncflem2 46212 fourierdlem4 46219 fourierdlem10 46225 fourierdlem28 46243 fourierdlem40 46255 fourierdlem50 46264 fourierdlem57 46271 fourierdlem59 46273 fourierdlem60 46274 fourierdlem61 46275 fourierdlem68 46282 fourierdlem74 46288 fourierdlem75 46289 fourierdlem76 46290 fourierdlem78 46292 fourierdlem79 46293 fourierdlem84 46298 fourierdlem93 46307 fourierdlem111 46325 fouriersw 46339 smfaddlem1 46871 smflimlem3 46881 |
| Copyright terms: Public domain | W3C validator |