| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltadd2dd | Structured version Visualization version GIF version | ||
| Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| ltadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | ltadd2d 11272 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝcr 11008 + caddc 11012 < clt 11149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-addrcl 11070 ax-pre-lttri 11083 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 |
| This theorem is referenced by: zltaddlt1le 13408 2tnp1ge0ge0 13733 ccatrn 14496 eirrlem 16113 prmreclem5 16832 iccntr 24708 icccmplem2 24710 ivthlem2 25351 uniioombllem3 25484 opnmbllem 25500 dvcnvre 25922 cosordlem 26437 efif1olem2 26450 atanlogaddlem 26821 pntibndlem2 27500 pntlemr 27511 dya2icoseg 34245 opnmbllem0 37640 posbezout 42077 fltnltalem 42639 binomcxplemdvbinom 44330 zltlesub 45271 supxrge 45322 ltadd12dd 45327 xrralrecnnle 45366 0ellimcdiv 45634 climleltrp 45661 ioodvbdlimc1lem2 45917 stoweidlem11 45996 stoweidlem14 45999 stoweidlem26 46011 stoweidlem44 46029 dirkertrigeqlem3 46085 dirkercncflem1 46088 dirkercncflem2 46089 fourierdlem4 46096 fourierdlem10 46102 fourierdlem28 46120 fourierdlem40 46132 fourierdlem50 46141 fourierdlem57 46148 fourierdlem59 46150 fourierdlem60 46151 fourierdlem61 46152 fourierdlem68 46159 fourierdlem74 46165 fourierdlem75 46166 fourierdlem76 46167 fourierdlem78 46169 fourierdlem79 46170 fourierdlem84 46175 fourierdlem93 46184 fourierdlem111 46202 fouriersw 46216 smfaddlem1 46748 smflimlem3 46758 |
| Copyright terms: Public domain | W3C validator |