MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltadd2dd Structured version   Visualization version   GIF version

Theorem ltadd2dd 11333
Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
letrd.3 (𝜑𝐶 ∈ ℝ)
ltletrd.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ltadd2dd (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵))

Proof of Theorem ltadd2dd
StepHypRef Expression
1 ltletrd.4 . 2 (𝜑𝐴 < 𝐵)
2 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
4 letrd.3 . . 3 (𝜑𝐶 ∈ ℝ)
52, 3, 4ltadd2d 11330 . 2 (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)))
61, 5mpbid 232 1 (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067   + caddc 11071   < clt 11208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-addrcl 11129  ax-pre-lttri 11142  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213
This theorem is referenced by:  zltaddlt1le  13466  2tnp1ge0ge0  13791  ccatrn  14554  eirrlem  16172  prmreclem5  16891  iccntr  24710  icccmplem2  24712  ivthlem2  25353  uniioombllem3  25486  opnmbllem  25502  dvcnvre  25924  cosordlem  26439  efif1olem2  26452  atanlogaddlem  26823  pntibndlem2  27502  pntlemr  27513  dya2icoseg  34268  opnmbllem0  37650  posbezout  42088  fltnltalem  42650  binomcxplemdvbinom  44342  zltlesub  45283  supxrge  45334  ltadd12dd  45339  xrralrecnnle  45379  0ellimcdiv  45647  climleltrp  45674  ioodvbdlimc1lem2  45930  stoweidlem11  46009  stoweidlem14  46012  stoweidlem26  46024  stoweidlem44  46042  dirkertrigeqlem3  46098  dirkercncflem1  46101  dirkercncflem2  46102  fourierdlem4  46109  fourierdlem10  46115  fourierdlem28  46133  fourierdlem40  46145  fourierdlem50  46154  fourierdlem57  46161  fourierdlem59  46163  fourierdlem60  46164  fourierdlem61  46165  fourierdlem68  46172  fourierdlem74  46178  fourierdlem75  46179  fourierdlem76  46180  fourierdlem78  46182  fourierdlem79  46183  fourierdlem84  46188  fourierdlem93  46197  fourierdlem111  46215  fouriersw  46229  smfaddlem1  46761  smflimlem3  46771
  Copyright terms: Public domain W3C validator