![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltadd2dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | ltadd2d 11446 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 + caddc 11187 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-addrcl 11245 ax-pre-lttri 11258 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: zltaddlt1le 13565 2tnp1ge0ge0 13880 ccatrn 14637 eirrlem 16252 prmreclem5 16967 iccntr 24862 icccmplem2 24864 ivthlem2 25506 uniioombllem3 25639 opnmbllem 25655 dvcnvre 26078 cosordlem 26590 efif1olem2 26603 atanlogaddlem 26974 pntibndlem2 27653 pntlemr 27664 dya2icoseg 34242 opnmbllem0 37616 posbezout 42057 fltnltalem 42617 binomcxplemdvbinom 44322 zltlesub 45200 supxrge 45253 ltadd12dd 45258 xrralrecnnle 45298 0ellimcdiv 45570 climleltrp 45597 ioodvbdlimc1lem2 45853 stoweidlem11 45932 stoweidlem14 45935 stoweidlem26 45947 stoweidlem44 45965 dirkertrigeqlem3 46021 dirkercncflem1 46024 dirkercncflem2 46025 fourierdlem4 46032 fourierdlem10 46038 fourierdlem28 46056 fourierdlem40 46068 fourierdlem50 46077 fourierdlem57 46084 fourierdlem59 46086 fourierdlem60 46087 fourierdlem61 46088 fourierdlem68 46095 fourierdlem74 46101 fourierdlem75 46102 fourierdlem76 46103 fourierdlem78 46105 fourierdlem79 46106 fourierdlem84 46111 fourierdlem93 46120 fourierdlem111 46138 fouriersw 46152 smfaddlem1 46684 smflimlem3 46694 |
Copyright terms: Public domain | W3C validator |