Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltadd2dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltletrd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltletrd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | ltadd2d 11114 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) |
6 | 1, 5 | mpbid 231 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5078 (class class class)co 7268 ℝcr 10854 + caddc 10858 < clt 10993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-addrcl 10916 ax-pre-lttri 10929 ax-pre-ltadd 10931 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-ltxr 10998 |
This theorem is referenced by: zltaddlt1le 13219 2tnp1ge0ge0 13530 ccatrn 14275 eirrlem 15894 prmreclem5 16602 iccntr 23965 icccmplem2 23967 ivthlem2 24597 uniioombllem3 24730 opnmbllem 24746 dvcnvre 25164 cosordlem 25667 efif1olem2 25680 atanlogaddlem 26044 pntibndlem2 26720 pntlemr 26731 dya2icoseg 32223 opnmbllem0 35792 fltnltalem 40479 binomcxplemdvbinom 41924 zltlesub 42777 supxrge 42831 ltadd12dd 42836 xrralrecnnle 42876 0ellimcdiv 43144 climleltrp 43171 ioodvbdlimc1lem2 43427 stoweidlem11 43506 stoweidlem14 43509 stoweidlem26 43521 stoweidlem44 43539 dirkertrigeqlem3 43595 dirkercncflem1 43598 dirkercncflem2 43599 fourierdlem4 43606 fourierdlem10 43612 fourierdlem28 43630 fourierdlem40 43642 fourierdlem50 43651 fourierdlem57 43658 fourierdlem59 43660 fourierdlem60 43661 fourierdlem61 43662 fourierdlem68 43669 fourierdlem74 43675 fourierdlem75 43676 fourierdlem76 43677 fourierdlem78 43679 fourierdlem79 43680 fourierdlem84 43685 fourierdlem93 43694 fourierdlem111 43712 fouriersw 43726 smfaddlem1 44249 smflimlem3 44259 |
Copyright terms: Public domain | W3C validator |