![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matmulcell | Structured version Visualization version GIF version |
Description: Multiplication in the matrix ring for a single cell of a matrix. (Contributed by AV, 17-Nov-2019.) (Revised by AV, 3-Jul-2022.) |
Ref | Expression |
---|---|
matmulcell.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matmulcell.b | ⊢ 𝐵 = (Base‘𝐴) |
matmulcell.m | ⊢ × = (.r‘𝐴) |
Ref | Expression |
---|---|
matmulcell | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matmulcell.a | . . . . . . . . 9 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | matmulcell.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 22132 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | matmulcell.m | . . . . . . . . . 10 ⊢ × = (.r‘𝐴) | |
5 | eqid 2730 | . . . . . . . . . . 11 ⊢ (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) | |
6 | 1, 5 | matmulr 22160 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r‘𝐴)) |
7 | 4, 6 | eqtr4id 2789 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)) |
8 | 7 | a1d 25 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))) |
9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))) |
10 | 9 | adantr 479 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))) |
11 | 10 | impcom 406 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)) |
12 | 11 | 3adant3 1130 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)) |
13 | 12 | oveqd 7428 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌)) |
14 | 13 | oveqd 7428 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝐼(𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌)𝐽)) |
15 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
16 | eqid 2730 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
17 | simp1 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
18 | 3 | simpld 493 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
19 | 18 | adantr 479 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑁 ∈ Fin) |
20 | 19 | 3ad2ant2 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑁 ∈ Fin) |
21 | 1, 15, 2 | matbas2i 22144 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
22 | 21 | adantr 479 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
23 | 22 | 3ad2ant2 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
24 | 1, 15, 2 | matbas2i 22144 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
25 | 24 | adantl 480 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
26 | 25 | 3ad2ant2 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
27 | simp3l 1199 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
28 | simp3r 1200 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) | |
29 | 5, 15, 16, 17, 20, 20, 20, 23, 26, 27, 28 | mamufv 22109 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) |
30 | 14, 29 | eqtrd 2770 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ⟨cotp 4635 ↦ cmpt 5230 × cxp 5673 ‘cfv 6542 (class class class)co 7411 ↑m cmap 8822 Fincfn 8941 Basecbs 17148 .rcmulr 17202 Σg cgsu 17390 Ringcrg 20127 maMul cmmul 22105 Mat cmat 22127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-hom 17225 df-cco 17226 df-0g 17391 df-prds 17397 df-pws 17399 df-sra 20930 df-rgmod 20931 df-dsmm 21506 df-frlm 21521 df-mamu 22106 df-mat 22128 |
This theorem is referenced by: mat1mhm 22206 scmatscm 22235 cpmatmcl 22441 |
Copyright terms: Public domain | W3C validator |