![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matmulcell | Structured version Visualization version GIF version |
Description: Multiplication in the matrix ring for a single cell of a matrix. (Contributed by AV, 17-Nov-2019.) (Revised by AV, 3-Jul-2022.) |
Ref | Expression |
---|---|
matmulcell.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matmulcell.b | ⊢ 𝐵 = (Base‘𝐴) |
matmulcell.m | ⊢ × = (.r‘𝐴) |
Ref | Expression |
---|---|
matmulcell | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matmulcell.a | . . . . . . . . 9 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | matmulcell.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 21811 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | matmulcell.m | . . . . . . . . . 10 ⊢ × = (.r‘𝐴) | |
5 | eqid 2731 | . . . . . . . . . . 11 ⊢ (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) | |
6 | 1, 5 | matmulr 21839 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r‘𝐴)) |
7 | 4, 6 | eqtr4id 2790 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)) |
8 | 7 | a1d 25 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))) |
9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))) |
10 | 9 | adantr 481 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))) |
11 | 10 | impcom 408 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)) |
12 | 11 | 3adant3 1132 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)) |
13 | 12 | oveqd 7394 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌)) |
14 | 13 | oveqd 7394 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝐼(𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌)𝐽)) |
15 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
16 | eqid 2731 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
17 | simp1 1136 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
18 | 3 | simpld 495 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
19 | 18 | adantr 481 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑁 ∈ Fin) |
20 | 19 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑁 ∈ Fin) |
21 | 1, 15, 2 | matbas2i 21823 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
22 | 21 | adantr 481 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
23 | 22 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
24 | 1, 15, 2 | matbas2i 21823 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
25 | 24 | adantl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
26 | 25 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
27 | simp3l 1201 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
28 | simp3r 1202 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) | |
29 | 5, 15, 16, 17, 20, 20, 20, 23, 26, 27, 28 | mamufv 21788 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) |
30 | 14, 29 | eqtrd 2771 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3459 ⟨cotp 4614 ↦ cmpt 5208 × cxp 5651 ‘cfv 6516 (class class class)co 7377 ↑m cmap 8787 Fincfn 8905 Basecbs 17109 .rcmulr 17163 Σg cgsu 17351 Ringcrg 19993 maMul cmmul 21784 Mat cmat 21806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5262 ax-sep 5276 ax-nul 5283 ax-pow 5340 ax-pr 5404 ax-un 7692 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3365 df-rab 3419 df-v 3461 df-sbc 3758 df-csb 3874 df-dif 3931 df-un 3933 df-in 3935 df-ss 3945 df-pss 3947 df-nul 4303 df-if 4507 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4886 df-iun 4976 df-br 5126 df-opab 5188 df-mpt 5209 df-tr 5243 df-id 5551 df-eprel 5557 df-po 5565 df-so 5566 df-fr 5608 df-we 5610 df-xp 5659 df-rel 5660 df-cnv 5661 df-co 5662 df-dm 5663 df-rn 5664 df-res 5665 df-ima 5666 df-pred 6273 df-ord 6340 df-on 6341 df-lim 6342 df-suc 6343 df-iota 6468 df-fun 6518 df-fn 6519 df-f 6520 df-f1 6521 df-fo 6522 df-f1o 6523 df-fv 6524 df-riota 7333 df-ov 7380 df-oprab 7381 df-mpo 7382 df-om 7823 df-1st 7941 df-2nd 7942 df-supp 8113 df-frecs 8232 df-wrecs 8263 df-recs 8337 df-rdg 8376 df-1o 8432 df-er 8670 df-map 8789 df-ixp 8858 df-en 8906 df-dom 8907 df-sdom 8908 df-fin 8909 df-fsupp 9328 df-sup 9402 df-pnf 11215 df-mnf 11216 df-xr 11217 df-ltxr 11218 df-le 11219 df-sub 11411 df-neg 11412 df-nn 12178 df-2 12240 df-3 12241 df-4 12242 df-5 12243 df-6 12244 df-7 12245 df-8 12246 df-9 12247 df-n0 12438 df-z 12524 df-dec 12643 df-uz 12788 df-fz 13450 df-struct 17045 df-sets 17062 df-slot 17080 df-ndx 17092 df-base 17110 df-ress 17139 df-plusg 17175 df-mulr 17176 df-sca 17178 df-vsca 17179 df-ip 17180 df-tset 17181 df-ple 17182 df-ds 17184 df-hom 17186 df-cco 17187 df-0g 17352 df-prds 17358 df-pws 17360 df-sra 20707 df-rgmod 20708 df-dsmm 21190 df-frlm 21205 df-mamu 21785 df-mat 21807 |
This theorem is referenced by: mat1mhm 21885 scmatscm 21914 cpmatmcl 22120 |
Copyright terms: Public domain | W3C validator |