MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matmulcell Structured version   Visualization version   GIF version

Theorem matmulcell 21057
Description: Multiplication in the matrix ring for a single cell of a matrix. (Contributed by AV, 17-Nov-2019.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
matmulcell.a 𝐴 = (𝑁 Mat 𝑅)
matmulcell.b 𝐵 = (Base‘𝐴)
matmulcell.m × = (.r𝐴)
Assertion
Ref Expression
matmulcell ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗)(.r𝑅)(𝑗𝑌𝐽)))))
Distinct variable groups:   𝐵,𝑗   𝑗,𝐼   𝑗,𝐽   𝑗,𝑁   𝑅,𝑗   𝑗,𝑋   𝑗,𝑌
Allowed substitution hints:   𝐴(𝑗)   × (𝑗)

Proof of Theorem matmulcell
StepHypRef Expression
1 matmulcell.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
2 matmulcell.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
31, 2matrcl 21024 . . . . . . . 8 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
4 eqid 2824 . . . . . . . . . . 11 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
51, 4matmulr 21050 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
6 matmulcell.m . . . . . . . . . 10 × = (.r𝐴)
75, 6syl6reqr 2878 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
87a1d 25 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)))
93, 8syl 17 . . . . . . 7 (𝑋𝐵 → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)))
109adantr 483 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)))
1110impcom 410 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵)) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
12113adant3 1128 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
1312oveqd 7176 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
1413oveqd 7176 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝐼(𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌)𝐽))
15 eqid 2824 . . 3 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2824 . . 3 (.r𝑅) = (.r𝑅)
17 simp1 1132 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Ring)
183simpld 497 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
1918adantr 483 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑁 ∈ Fin)
20193ad2ant2 1130 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑁 ∈ Fin)
211, 15, 2matbas2i 21034 . . . . 5 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
2221adantr 483 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
23223ad2ant2 1130 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
241, 15, 2matbas2i 21034 . . . . 5 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
2524adantl 484 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
26253ad2ant2 1130 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
27 simp3l 1197 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
28 simp3r 1198 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
294, 15, 16, 17, 20, 20, 20, 23, 26, 27, 28mamufv 21001 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌)𝐽) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗)(.r𝑅)(𝑗𝑌𝐽)))))
3014, 29eqtrd 2859 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗)(.r𝑅)(𝑗𝑌𝐽)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  Vcvv 3497  cotp 4578  cmpt 5149   × cxp 5556  cfv 6358  (class class class)co 7159  m cmap 8409  Fincfn 8512  Basecbs 16486  .rcmulr 16569   Σg cgsu 16717  Ringcrg 19300   maMul cmmul 20997   Mat cmat 21019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-ot 4579  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-hom 16592  df-cco 16593  df-0g 16718  df-prds 16724  df-pws 16726  df-sra 19947  df-rgmod 19948  df-dsmm 20879  df-frlm 20894  df-mamu 20998  df-mat 21020
This theorem is referenced by:  mat1mhm  21096  scmatscm  21125  cpmatmcl  21330
  Copyright terms: Public domain W3C validator