MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matmulcell Structured version   Visualization version   GIF version

Theorem matmulcell 22363
Description: Multiplication in the matrix ring for a single cell of a matrix. (Contributed by AV, 17-Nov-2019.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
matmulcell.a 𝐴 = (𝑁 Mat 𝑅)
matmulcell.b 𝐵 = (Base‘𝐴)
matmulcell.m × = (.r𝐴)
Assertion
Ref Expression
matmulcell ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗)(.r𝑅)(𝑗𝑌𝐽)))))
Distinct variable groups:   𝐵,𝑗   𝑗,𝐼   𝑗,𝐽   𝑗,𝑁   𝑅,𝑗   𝑗,𝑋   𝑗,𝑌
Allowed substitution hints:   𝐴(𝑗)   × (𝑗)

Proof of Theorem matmulcell
StepHypRef Expression
1 matmulcell.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
2 matmulcell.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
31, 2matrcl 22330 . . . . . . . 8 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
4 matmulcell.m . . . . . . . . . 10 × = (.r𝐴)
5 eqid 2733 . . . . . . . . . . 11 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
61, 5matmulr 22356 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
74, 6eqtr4id 2787 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
87a1d 25 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)))
93, 8syl 17 . . . . . . 7 (𝑋𝐵 → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)))
109adantr 480 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)))
1110impcom 407 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵)) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
12113adant3 1132 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
1312oveqd 7371 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
1413oveqd 7371 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝐼(𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌)𝐽))
15 eqid 2733 . . 3 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2733 . . 3 (.r𝑅) = (.r𝑅)
17 simp1 1136 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Ring)
183simpld 494 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
1918adantr 480 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑁 ∈ Fin)
20193ad2ant2 1134 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑁 ∈ Fin)
211, 15, 2matbas2i 22340 . . . . 5 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
2221adantr 480 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
23223ad2ant2 1134 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
241, 15, 2matbas2i 22340 . . . . 5 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
2524adantl 481 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
26253ad2ant2 1134 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
27 simp3l 1202 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
28 simp3r 1203 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
295, 15, 16, 17, 20, 20, 20, 23, 26, 27, 28mamufv 22312 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌)𝐽) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗)(.r𝑅)(𝑗𝑌𝐽)))))
3014, 29eqtrd 2768 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗)(.r𝑅)(𝑗𝑌𝐽)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  cotp 4585  cmpt 5176   × cxp 5619  cfv 6488  (class class class)co 7354  m cmap 8758  Fincfn 8877  Basecbs 17124  .rcmulr 17166   Σg cgsu 17348  Ringcrg 20155   maMul cmmul 22308   Mat cmat 22325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-fz 13412  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-hom 17189  df-cco 17190  df-0g 17349  df-prds 17355  df-pws 17357  df-sra 21111  df-rgmod 21112  df-dsmm 21673  df-frlm 21688  df-mamu 22309  df-mat 22326
This theorem is referenced by:  mat1mhm  22402  scmatscm  22431  cpmatmcl  22637
  Copyright terms: Public domain W3C validator