![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matmulcell | Structured version Visualization version GIF version |
Description: Multiplication in the matrix ring for a single cell of a matrix. (Contributed by AV, 17-Nov-2019.) (Revised by AV, 3-Jul-2022.) |
Ref | Expression |
---|---|
matmulcell.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matmulcell.b | ⊢ 𝐵 = (Base‘𝐴) |
matmulcell.m | ⊢ × = (.r‘𝐴) |
Ref | Expression |
---|---|
matmulcell | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matmulcell.a | . . . . . . . . 9 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | matmulcell.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 20622 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | eqid 2777 | . . . . . . . . . . 11 ⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
5 | 1, 4 | matmulr 20648 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
6 | matmulcell.m | . . . . . . . . . 10 ⊢ × = (.r‘𝐴) | |
7 | 5, 6 | syl6reqr 2832 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → × = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)) |
8 | 7 | a1d 25 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑅 ∈ Ring → × = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉))) |
9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → (𝑅 ∈ Ring → × = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉))) |
10 | 9 | adantr 474 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑅 ∈ Ring → × = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉))) |
11 | 10 | impcom 398 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → × = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)) |
12 | 11 | 3adant3 1123 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → × = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)) |
13 | 12 | oveqd 6939 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝑋 × 𝑌) = (𝑋(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑌)) |
14 | 13 | oveqd 6939 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝐼(𝑋(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑌)𝐽)) |
15 | eqid 2777 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
16 | eqid 2777 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
17 | simp1 1127 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
18 | 3 | simpld 490 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
19 | 18 | adantr 474 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑁 ∈ Fin) |
20 | 19 | 3ad2ant2 1125 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑁 ∈ Fin) |
21 | 1, 15, 2 | matbas2i 20632 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
22 | 21 | adantr 474 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
23 | 22 | 3ad2ant2 1125 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
24 | 1, 15, 2 | matbas2i 20632 | . . . . 5 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
25 | 24 | adantl 475 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
26 | 25 | 3ad2ant2 1125 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
27 | simp3l 1215 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
28 | simp3r 1216 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) | |
29 | 4, 15, 16, 17, 20, 20, 20, 23, 26, 27, 28 | mamufv 20597 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) |
30 | 14, 29 | eqtrd 2813 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝐽))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 Vcvv 3397 〈cotp 4405 ↦ cmpt 4965 × cxp 5353 ‘cfv 6135 (class class class)co 6922 ↑𝑚 cmap 8140 Fincfn 8241 Basecbs 16255 .rcmulr 16339 Σg cgsu 16487 Ringcrg 18934 maMul cmmul 20593 Mat cmat 20617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-ot 4406 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-sup 8636 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-fz 12644 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-hom 16362 df-cco 16363 df-0g 16488 df-prds 16494 df-pws 16496 df-sra 19569 df-rgmod 19570 df-dsmm 20475 df-frlm 20490 df-mamu 20594 df-mat 20618 |
This theorem is referenced by: mat1mhm 20695 scmatscm 20724 cpmatmcl 20931 |
Copyright terms: Public domain | W3C validator |