MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matmulcell Structured version   Visualization version   GIF version

Theorem matmulcell 20655
Description: Multiplication in the matrix ring for a single cell of a matrix. (Contributed by AV, 17-Nov-2019.) (Revised by AV, 3-Jul-2022.)
Hypotheses
Ref Expression
matmulcell.a 𝐴 = (𝑁 Mat 𝑅)
matmulcell.b 𝐵 = (Base‘𝐴)
matmulcell.m × = (.r𝐴)
Assertion
Ref Expression
matmulcell ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗)(.r𝑅)(𝑗𝑌𝐽)))))
Distinct variable groups:   𝐵,𝑗   𝑗,𝐼   𝑗,𝐽   𝑗,𝑁   𝑅,𝑗   𝑗,𝑋   𝑗,𝑌
Allowed substitution hints:   𝐴(𝑗)   × (𝑗)

Proof of Theorem matmulcell
StepHypRef Expression
1 matmulcell.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
2 matmulcell.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
31, 2matrcl 20622 . . . . . . . 8 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
4 eqid 2777 . . . . . . . . . . 11 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
51, 4matmulr 20648 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
6 matmulcell.m . . . . . . . . . 10 × = (.r𝐴)
75, 6syl6reqr 2832 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
87a1d 25 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)))
93, 8syl 17 . . . . . . 7 (𝑋𝐵 → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)))
109adantr 474 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑅 ∈ Ring → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)))
1110impcom 398 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵)) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
12113adant3 1123 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩))
1312oveqd 6939 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝑋 × 𝑌) = (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌))
1413oveqd 6939 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝐼(𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌)𝐽))
15 eqid 2777 . . 3 (Base‘𝑅) = (Base‘𝑅)
16 eqid 2777 . . 3 (.r𝑅) = (.r𝑅)
17 simp1 1127 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Ring)
183simpld 490 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
1918adantr 474 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑁 ∈ Fin)
20193ad2ant2 1125 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑁 ∈ Fin)
211, 15, 2matbas2i 20632 . . . . 5 (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
2221adantr 474 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
23223ad2ant2 1125 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑋 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
241, 15, 2matbas2i 20632 . . . . 5 (𝑌𝐵𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
2524adantl 475 . . . 4 ((𝑋𝐵𝑌𝐵) → 𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
26253ad2ant2 1125 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝑌 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
27 simp3l 1215 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
28 simp3r 1216 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
294, 15, 16, 17, 20, 20, 20, 23, 26, 27, 28mamufv 20597 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑌)𝐽) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗)(.r𝑅)(𝑗𝑌𝐽)))))
3014, 29eqtrd 2813 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑋 × 𝑌)𝐽) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗)(.r𝑅)(𝑗𝑌𝐽)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2106  Vcvv 3397  cotp 4405  cmpt 4965   × cxp 5353  cfv 6135  (class class class)co 6922  𝑚 cmap 8140  Fincfn 8241  Basecbs 16255  .rcmulr 16339   Σg cgsu 16487  Ringcrg 18934   maMul cmmul 20593   Mat cmat 20617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-ot 4406  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-hom 16362  df-cco 16363  df-0g 16488  df-prds 16494  df-pws 16496  df-sra 19569  df-rgmod 19570  df-dsmm 20475  df-frlm 20490  df-mamu 20594  df-mat 20618
This theorem is referenced by:  mat1mhm  20695  scmatscm  20724  cpmatmcl  20931
  Copyright terms: Public domain W3C validator