MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuvs1 Structured version   Visualization version   GIF version

Theorem mamuvs1 22396
Description: Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamudi.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamudi.m (𝜑𝑀 ∈ Fin)
mamudi.n (𝜑𝑁 ∈ Fin)
mamudi.o (𝜑𝑂 ∈ Fin)
mamuvs1.t · = (.r𝑅)
mamuvs1.x (𝜑𝑋𝐵)
mamuvs1.y (𝜑𝑌 ∈ (𝐵m (𝑀 × 𝑁)))
mamuvs1.z (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
Assertion
Ref Expression
mamuvs1 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)))

Proof of Theorem mamuvs1
Dummy variables 𝑖 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 eqid 2726 . . . . . 6 (0g𝑅) = (0g𝑅)
3 mamuvs1.t . . . . . 6 · = (.r𝑅)
4 mamucl.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
54adantr 479 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
6 mamudi.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
76adantr 479 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
8 mamuvs1.x . . . . . . 7 (𝜑𝑋𝐵)
98adantr 479 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋𝐵)
104ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
11 mamuvs1.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵m (𝑀 × 𝑁)))
12 elmapi 8878 . . . . . . . . . 10 (𝑌 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑌:(𝑀 × 𝑁)⟶𝐵)
1311, 12syl 17 . . . . . . . . 9 (𝜑𝑌:(𝑀 × 𝑁)⟶𝐵)
1413ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌:(𝑀 × 𝑁)⟶𝐵)
15 simplrl 775 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
16 simpr 483 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
1714, 15, 16fovcdmd 7598 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑌𝑗) ∈ 𝐵)
18 mamuvs1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
19 elmapi 8878 . . . . . . . . . 10 (𝑍 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
2018, 19syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
2120ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
22 simplrr 776 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
2321, 16, 22fovcdmd 7598 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
241, 3, 10, 17, 23ringcld 20242 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
25 eqid 2726 . . . . . . 7 (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))
26 ovexd 7459 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ V)
27 fvexd 6916 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (0g𝑅) ∈ V)
2825, 7, 26, 27fsuppmptdm 9419 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) finSupp (0g𝑅))
291, 2, 3, 5, 7, 9, 24, 28gsummulc2 20296 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))) = (𝑋 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))))
30 df-ov 7427 . . . . . . . . . 10 (𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) = ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)‘⟨𝑖, 𝑗⟩)
31 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
32 opelxpi 5719 . . . . . . . . . . . 12 ((𝑖𝑀𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
3331, 32sylan 578 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
34 mamudi.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Fin)
35 xpfi 9360 . . . . . . . . . . . . . 14 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
3634, 6, 35syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → (𝑀 × 𝑁) ∈ Fin)
3736ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑀 × 𝑁) ∈ Fin)
388ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋𝐵)
39 ffn 6728 . . . . . . . . . . . . . 14 (𝑌:(𝑀 × 𝑁)⟶𝐵𝑌 Fn (𝑀 × 𝑁))
4011, 12, 393syl 18 . . . . . . . . . . . . 13 (𝜑𝑌 Fn (𝑀 × 𝑁))
4140ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌 Fn (𝑀 × 𝑁))
42 df-ov 7427 . . . . . . . . . . . . . 14 (𝑖𝑌𝑗) = (𝑌‘⟨𝑖, 𝑗⟩)
4342eqcomi 2735 . . . . . . . . . . . . 13 (𝑌‘⟨𝑖, 𝑗⟩) = (𝑖𝑌𝑗)
4443a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁)) → (𝑌‘⟨𝑖, 𝑗⟩) = (𝑖𝑌𝑗))
4537, 38, 41, 44ofc1 7717 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁)) → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)‘⟨𝑖, 𝑗⟩) = (𝑋 · (𝑖𝑌𝑗)))
4633, 45mpdan 685 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)‘⟨𝑖, 𝑗⟩) = (𝑋 · (𝑖𝑌𝑗)))
4730, 46eqtrid 2778 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) = (𝑋 · (𝑖𝑌𝑗)))
4847oveq1d 7439 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) · (𝑗𝑍𝑘)) = ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)))
491, 3ringass 20236 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))
5010, 38, 17, 23, 49syl13anc 1369 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))
5148, 50eqtrd 2766 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))
5251mpteq2dva 5253 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) · (𝑗𝑍𝑘))) = (𝑗𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))
5352oveq2d 7440 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) · (𝑗𝑍𝑘)))) = (𝑅 Σg (𝑗𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))))
54 mamudi.f . . . . . . 7 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
5534adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
56 mamudi.o . . . . . . . 8 (𝜑𝑂 ∈ Fin)
5756adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
5811adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌 ∈ (𝐵m (𝑀 × 𝑁)))
5918adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
60 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
6154, 1, 3, 5, 55, 7, 57, 58, 59, 31, 60mamufv 22385 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑌𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))
6261oveq2d 7440 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)) = (𝑋 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))))
6329, 53, 623eqtr4d 2776 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) · (𝑗𝑍𝑘)))) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
64 fconst6g 6791 . . . . . . . . 9 (𝑋𝐵 → ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵)
658, 64syl 17 . . . . . . . 8 (𝜑 → ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵)
661fvexi 6915 . . . . . . . . 9 𝐵 ∈ V
67 elmapg 8868 . . . . . . . . 9 ((𝐵 ∈ V ∧ (𝑀 × 𝑁) ∈ Fin) → (((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵m (𝑀 × 𝑁)) ↔ ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵))
6866, 36, 67sylancr 585 . . . . . . . 8 (𝜑 → (((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵m (𝑀 × 𝑁)) ↔ ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵))
6965, 68mpbird 256 . . . . . . 7 (𝜑 → ((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵m (𝑀 × 𝑁)))
701, 3ringvcl 22391 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵m (𝑀 × 𝑁)) ∧ 𝑌 ∈ (𝐵m (𝑀 × 𝑁))) → (((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌) ∈ (𝐵m (𝑀 × 𝑁)))
714, 69, 11, 70syl3anc 1368 . . . . . 6 (𝜑 → (((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌) ∈ (𝐵m (𝑀 × 𝑁)))
7271adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌) ∈ (𝐵m (𝑀 × 𝑁)))
7354, 1, 3, 5, 55, 7, 57, 72, 59, 31, 60mamufv 22385 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝑗) · (𝑗𝑍𝑘)))))
74 df-ov 7427 . . . . 5 (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))𝑘) = ((((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩)
75 opelxpi 5719 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
7675adantl 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
77 xpfi 9360 . . . . . . . . 9 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
7834, 56, 77syl2anc 582 . . . . . . . 8 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
7978adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
801, 4, 54, 34, 6, 56, 11, 18mamucl 22392 . . . . . . . . 9 (𝜑 → (𝑌𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
81 elmapi 8878 . . . . . . . . 9 ((𝑌𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
82 ffn 6728 . . . . . . . . 9 ((𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
8380, 81, 823syl 18 . . . . . . . 8 (𝜑 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
8483adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
85 df-ov 7427 . . . . . . . . 9 (𝑖(𝑌𝐹𝑍)𝑘) = ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩)
8685eqcomi 2735 . . . . . . . 8 ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑖(𝑌𝐹𝑍)𝑘)
8786a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑖(𝑌𝐹𝑍)𝑘))
8879, 9, 84, 87ofc1 7717 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
8976, 88mpdan 685 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
9074, 89eqtrid 2778 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))𝑘) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
9163, 73, 903eqtr4d 2776 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))𝑘))
9291ralrimivva 3191 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))𝑘))
931, 4, 54, 34, 6, 56, 71, 18mamucl 22392 . . . 4 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
94 elmapi 8878 . . . 4 (((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
95 ffn 6728 . . . 4 (((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂))
9693, 94, 953syl 18 . . 3 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂))
97 fconst6g 6791 . . . . . . 7 (𝑋𝐵 → ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵)
988, 97syl 17 . . . . . 6 (𝜑 → ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵)
99 elmapg 8868 . . . . . . 7 ((𝐵 ∈ V ∧ (𝑀 × 𝑂) ∈ Fin) → (((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵m (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵))
10066, 78, 99sylancr 585 . . . . . 6 (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵m (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵))
10198, 100mpbird 256 . . . . 5 (𝜑 → ((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵m (𝑀 × 𝑂)))
1021, 3ringvcl 22391 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵m (𝑀 × 𝑂)) ∧ (𝑌𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂))) → (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
1034, 101, 80, 102syl3anc 1368 . . . 4 (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
104 elmapi 8878 . . . 4 ((((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
105 ffn 6728 . . . 4 ((((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂))
106103, 104, 1053syl 18 . . 3 (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂))
107 eqfnov2 7556 . . 3 ((((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂) ∧ (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂)) → (((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))𝑘)))
10896, 106, 107syl2anc 582 . 2 (𝜑 → (((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍))𝑘)))
10992, 108mpbird 256 1 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘f · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘f · (𝑌𝐹𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  Vcvv 3462  {csn 4633  cop 4639  cotp 4641  cmpt 5236   × cxp 5680   Fn wfn 6549  wf 6550  cfv 6554  (class class class)co 7424  f cof 7688  m cmap 8855  Fincfn 8974  Basecbs 17213  .rcmulr 17267  0gc0g 17454   Σg cgsu 17455  Ringcrg 20216   maMul cmmul 22381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-ot 4642  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-plusg 17279  df-0g 17456  df-gsum 17457  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-grp 18931  df-minusg 18932  df-ghm 19207  df-cntz 19311  df-cmn 19780  df-abl 19781  df-mgp 20118  df-ur 20165  df-ring 20218  df-mamu 22382
This theorem is referenced by:  matassa  22437  mdetmul  22616
  Copyright terms: Public domain W3C validator