MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuvs1 Structured version   Visualization version   GIF version

Theorem mamuvs1 20536
Description: Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamudi.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamudi.m (𝜑𝑀 ∈ Fin)
mamudi.n (𝜑𝑁 ∈ Fin)
mamudi.o (𝜑𝑂 ∈ Fin)
mamuvs1.t · = (.r𝑅)
mamuvs1.x (𝜑𝑋𝐵)
mamuvs1.y (𝜑𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
mamuvs1.z (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
Assertion
Ref Expression
mamuvs1 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)))

Proof of Theorem mamuvs1
Dummy variables 𝑖 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 eqid 2799 . . . . . 6 (0g𝑅) = (0g𝑅)
3 eqid 2799 . . . . . 6 (+g𝑅) = (+g𝑅)
4 mamuvs1.t . . . . . 6 · = (.r𝑅)
5 mamucl.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
65adantr 473 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
7 mamudi.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
87adantr 473 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
9 mamuvs1.x . . . . . . 7 (𝜑𝑋𝐵)
109adantr 473 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋𝐵)
115ad2antrr 718 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
12 mamuvs1.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
13 elmapi 8117 . . . . . . . . . 10 (𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑌:(𝑀 × 𝑁)⟶𝐵)
1412, 13syl 17 . . . . . . . . 9 (𝜑𝑌:(𝑀 × 𝑁)⟶𝐵)
1514ad2antrr 718 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌:(𝑀 × 𝑁)⟶𝐵)
16 simplrl 796 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
17 simpr 478 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
1815, 16, 17fovrnd 7040 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑌𝑗) ∈ 𝐵)
19 mamuvs1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
20 elmapi 8117 . . . . . . . . . 10 (𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
2119, 20syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
2221ad2antrr 718 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
23 simplrr 797 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
2422, 17, 23fovrnd 7040 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
251, 4ringcl 18877 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
2611, 18, 24, 25syl3anc 1491 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
27 eqid 2799 . . . . . . 7 (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))
28 ovexd 6912 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ V)
29 fvexd 6426 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (0g𝑅) ∈ V)
3027, 8, 28, 29fsuppmptdm 8528 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) finSupp (0g𝑅))
311, 2, 3, 4, 6, 8, 10, 26, 30gsummulc2 18923 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))) = (𝑋 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))))
32 df-ov 6881 . . . . . . . . . 10 (𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) = ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)‘⟨𝑖, 𝑗⟩)
33 simprl 788 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
34 opelxpi 5349 . . . . . . . . . . . 12 ((𝑖𝑀𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
3533, 34sylan 576 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
36 mamudi.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Fin)
37 xpfi 8473 . . . . . . . . . . . . . 14 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
3836, 7, 37syl2anc 580 . . . . . . . . . . . . 13 (𝜑 → (𝑀 × 𝑁) ∈ Fin)
3938ad2antrr 718 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑀 × 𝑁) ∈ Fin)
409ad2antrr 718 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋𝐵)
41 ffn 6256 . . . . . . . . . . . . . 14 (𝑌:(𝑀 × 𝑁)⟶𝐵𝑌 Fn (𝑀 × 𝑁))
4212, 13, 413syl 18 . . . . . . . . . . . . 13 (𝜑𝑌 Fn (𝑀 × 𝑁))
4342ad2antrr 718 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌 Fn (𝑀 × 𝑁))
44 df-ov 6881 . . . . . . . . . . . . . 14 (𝑖𝑌𝑗) = (𝑌‘⟨𝑖, 𝑗⟩)
4544eqcomi 2808 . . . . . . . . . . . . 13 (𝑌‘⟨𝑖, 𝑗⟩) = (𝑖𝑌𝑗)
4645a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁)) → (𝑌‘⟨𝑖, 𝑗⟩) = (𝑖𝑌𝑗))
4739, 40, 43, 46ofc1 7154 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁)) → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)‘⟨𝑖, 𝑗⟩) = (𝑋 · (𝑖𝑌𝑗)))
4835, 47mpdan 679 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)‘⟨𝑖, 𝑗⟩) = (𝑋 · (𝑖𝑌𝑗)))
4932, 48syl5eq 2845 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) = (𝑋 · (𝑖𝑌𝑗)))
5049oveq1d 6893 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)) = ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)))
511, 4ringass 18880 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))
5211, 40, 18, 24, 51syl13anc 1492 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))
5350, 52eqtrd 2833 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))
5453mpteq2dva 4937 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘))) = (𝑗𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))
5554oveq2d 6894 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)))) = (𝑅 Σg (𝑗𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))))
56 mamudi.f . . . . . . 7 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
5736adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
58 mamudi.o . . . . . . . 8 (𝜑𝑂 ∈ Fin)
5958adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
6012adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
6119adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
62 simprr 790 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
6356, 1, 4, 6, 57, 8, 59, 60, 61, 33, 62mamufv 20518 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑌𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))
6463oveq2d 6894 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)) = (𝑋 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))))
6531, 55, 643eqtr4d 2843 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)))) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
66 fconst6g 6309 . . . . . . . . 9 (𝑋𝐵 → ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵)
679, 66syl 17 . . . . . . . 8 (𝜑 → ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵)
681fvexi 6425 . . . . . . . . 9 𝐵 ∈ V
69 elmapg 8108 . . . . . . . . 9 ((𝐵 ∈ V ∧ (𝑀 × 𝑁) ∈ Fin) → (((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑁)) ↔ ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵))
7068, 38, 69sylancr 582 . . . . . . . 8 (𝜑 → (((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑁)) ↔ ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵))
7167, 70mpbird 249 . . . . . . 7 (𝜑 → ((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
721, 4ringvcl 20529 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑁)) ∧ 𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁))) → (((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
735, 71, 12, 72syl3anc 1491 . . . . . 6 (𝜑 → (((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
7473adantr 473 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
7556, 1, 4, 6, 57, 8, 59, 74, 61, 33, 62mamufv 20518 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)))))
76 df-ov 6881 . . . . 5 (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘) = ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩)
77 opelxpi 5349 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
7877adantl 474 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
79 xpfi 8473 . . . . . . . . 9 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
8036, 58, 79syl2anc 580 . . . . . . . 8 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
8180adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
821, 5, 56, 36, 7, 58, 12, 19mamucl 20532 . . . . . . . . 9 (𝜑 → (𝑌𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
83 elmapi 8117 . . . . . . . . 9 ((𝑌𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
84 ffn 6256 . . . . . . . . 9 ((𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
8582, 83, 843syl 18 . . . . . . . 8 (𝜑 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
8685adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
87 df-ov 6881 . . . . . . . . 9 (𝑖(𝑌𝐹𝑍)𝑘) = ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩)
8887eqcomi 2808 . . . . . . . 8 ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑖(𝑌𝐹𝑍)𝑘)
8988a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑖(𝑌𝐹𝑍)𝑘))
9081, 10, 86, 89ofc1 7154 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
9178, 90mpdan 679 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
9276, 91syl5eq 2845 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
9365, 75, 923eqtr4d 2843 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘))
9493ralrimivva 3152 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘))
951, 5, 56, 36, 7, 58, 73, 19mamucl 20532 . . . 4 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
96 elmapi 8117 . . . 4 (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
97 ffn 6256 . . . 4 (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂))
9895, 96, 973syl 18 . . 3 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂))
99 fconst6g 6309 . . . . . . 7 (𝑋𝐵 → ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵)
1009, 99syl 17 . . . . . 6 (𝜑 → ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵)
101 elmapg 8108 . . . . . . 7 ((𝐵 ∈ V ∧ (𝑀 × 𝑂) ∈ Fin) → (((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵))
10268, 80, 101sylancr 582 . . . . . 6 (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵))
103100, 102mpbird 249 . . . . 5 (𝜑 → ((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
1041, 4ringvcl 20529 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ∧ (𝑌𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂))) → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
1055, 103, 82, 104syl3anc 1491 . . . 4 (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
106 elmapi 8117 . . . 4 ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
107 ffn 6256 . . . 4 ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂))
108105, 106, 1073syl 18 . . 3 (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂))
109 eqfnov2 7001 . . 3 ((((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂) ∧ (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂)) → (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘)))
11098, 108, 109syl2anc 580 . 2 (𝜑 → (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘)))
11194, 110mpbird 249 1 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3089  Vcvv 3385  {csn 4368  cop 4374  cotp 4376  cmpt 4922   × cxp 5310   Fn wfn 6096  wf 6097  cfv 6101  (class class class)co 6878  𝑓 cof 7129  𝑚 cmap 8095  Fincfn 8195  Basecbs 16184  +gcplusg 16267  .rcmulr 16268  0gc0g 16415   Σg cgsu 16416  Ringcrg 18863   maMul cmmul 20514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-ot 4377  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-oi 8657  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721  df-seq 13056  df-hash 13371  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-plusg 16280  df-0g 16417  df-gsum 16418  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-mhm 17650  df-grp 17741  df-minusg 17742  df-ghm 17971  df-cntz 18062  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-mamu 20515
This theorem is referenced by:  matassa  20575  mdetmul  20755
  Copyright terms: Public domain W3C validator