MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuvs1 Structured version   Visualization version   GIF version

Theorem mamuvs1 20702
Description: Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamudi.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamudi.m (𝜑𝑀 ∈ Fin)
mamudi.n (𝜑𝑁 ∈ Fin)
mamudi.o (𝜑𝑂 ∈ Fin)
mamuvs1.t · = (.r𝑅)
mamuvs1.x (𝜑𝑋𝐵)
mamuvs1.y (𝜑𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
mamuvs1.z (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
Assertion
Ref Expression
mamuvs1 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)))

Proof of Theorem mamuvs1
Dummy variables 𝑖 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 eqid 2797 . . . . . 6 (0g𝑅) = (0g𝑅)
3 eqid 2797 . . . . . 6 (+g𝑅) = (+g𝑅)
4 mamuvs1.t . . . . . 6 · = (.r𝑅)
5 mamucl.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
65adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
7 mamudi.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
87adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
9 mamuvs1.x . . . . . . 7 (𝜑𝑋𝐵)
109adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋𝐵)
115ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
12 mamuvs1.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
13 elmapi 8285 . . . . . . . . . 10 (𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑌:(𝑀 × 𝑁)⟶𝐵)
1412, 13syl 17 . . . . . . . . 9 (𝜑𝑌:(𝑀 × 𝑁)⟶𝐵)
1514ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌:(𝑀 × 𝑁)⟶𝐵)
16 simplrl 773 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
17 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
1815, 16, 17fovrnd 7183 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑌𝑗) ∈ 𝐵)
19 mamuvs1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
20 elmapi 8285 . . . . . . . . . 10 (𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
2119, 20syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
2221ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
23 simplrr 774 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
2422, 17, 23fovrnd 7183 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
251, 4ringcl 19005 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
2611, 18, 24, 25syl3anc 1364 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
27 eqid 2797 . . . . . . 7 (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))
28 ovexd 7057 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ V)
29 fvexd 6560 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (0g𝑅) ∈ V)
3027, 8, 28, 29fsuppmptdm 8697 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) finSupp (0g𝑅))
311, 2, 3, 4, 6, 8, 10, 26, 30gsummulc2 19051 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))) = (𝑋 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))))
32 df-ov 7026 . . . . . . . . . 10 (𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) = ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)‘⟨𝑖, 𝑗⟩)
33 simprl 767 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
34 opelxpi 5487 . . . . . . . . . . . 12 ((𝑖𝑀𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
3533, 34sylan 580 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
36 mamudi.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Fin)
37 xpfi 8642 . . . . . . . . . . . . . 14 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
3836, 7, 37syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑀 × 𝑁) ∈ Fin)
3938ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑀 × 𝑁) ∈ Fin)
409ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋𝐵)
41 ffn 6389 . . . . . . . . . . . . . 14 (𝑌:(𝑀 × 𝑁)⟶𝐵𝑌 Fn (𝑀 × 𝑁))
4212, 13, 413syl 18 . . . . . . . . . . . . 13 (𝜑𝑌 Fn (𝑀 × 𝑁))
4342ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌 Fn (𝑀 × 𝑁))
44 df-ov 7026 . . . . . . . . . . . . . 14 (𝑖𝑌𝑗) = (𝑌‘⟨𝑖, 𝑗⟩)
4544eqcomi 2806 . . . . . . . . . . . . 13 (𝑌‘⟨𝑖, 𝑗⟩) = (𝑖𝑌𝑗)
4645a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁)) → (𝑌‘⟨𝑖, 𝑗⟩) = (𝑖𝑌𝑗))
4739, 40, 43, 46ofc1 7297 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁)) → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)‘⟨𝑖, 𝑗⟩) = (𝑋 · (𝑖𝑌𝑗)))
4835, 47mpdan 683 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)‘⟨𝑖, 𝑗⟩) = (𝑋 · (𝑖𝑌𝑗)))
4932, 48syl5eq 2845 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) = (𝑋 · (𝑖𝑌𝑗)))
5049oveq1d 7038 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)) = ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)))
511, 4ringass 19008 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))
5211, 40, 18, 24, 51syl13anc 1365 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))
5350, 52eqtrd 2833 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))
5453mpteq2dva 5062 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘))) = (𝑗𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))
5554oveq2d 7039 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)))) = (𝑅 Σg (𝑗𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))))
56 mamudi.f . . . . . . 7 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
5736adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
58 mamudi.o . . . . . . . 8 (𝜑𝑂 ∈ Fin)
5958adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
6012adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
6119adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
62 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
6356, 1, 4, 6, 57, 8, 59, 60, 61, 33, 62mamufv 20684 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑌𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))
6463oveq2d 7039 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)) = (𝑋 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))))
6531, 55, 643eqtr4d 2843 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)))) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
66 fconst6g 6443 . . . . . . . . 9 (𝑋𝐵 → ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵)
679, 66syl 17 . . . . . . . 8 (𝜑 → ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵)
681fvexi 6559 . . . . . . . . 9 𝐵 ∈ V
69 elmapg 8276 . . . . . . . . 9 ((𝐵 ∈ V ∧ (𝑀 × 𝑁) ∈ Fin) → (((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑁)) ↔ ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵))
7068, 38, 69sylancr 587 . . . . . . . 8 (𝜑 → (((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑁)) ↔ ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵))
7167, 70mpbird 258 . . . . . . 7 (𝜑 → ((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
721, 4ringvcl 20695 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑁)) ∧ 𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁))) → (((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
735, 71, 12, 72syl3anc 1364 . . . . . 6 (𝜑 → (((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
7473adantr 481 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
7556, 1, 4, 6, 57, 8, 59, 74, 61, 33, 62mamufv 20684 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)))))
76 df-ov 7026 . . . . 5 (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘) = ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩)
77 opelxpi 5487 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
7877adantl 482 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
79 xpfi 8642 . . . . . . . . 9 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
8036, 58, 79syl2anc 584 . . . . . . . 8 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
8180adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
821, 5, 56, 36, 7, 58, 12, 19mamucl 20698 . . . . . . . . 9 (𝜑 → (𝑌𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
83 elmapi 8285 . . . . . . . . 9 ((𝑌𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
84 ffn 6389 . . . . . . . . 9 ((𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
8582, 83, 843syl 18 . . . . . . . 8 (𝜑 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
8685adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
87 df-ov 7026 . . . . . . . . 9 (𝑖(𝑌𝐹𝑍)𝑘) = ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩)
8887eqcomi 2806 . . . . . . . 8 ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑖(𝑌𝐹𝑍)𝑘)
8988a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑖(𝑌𝐹𝑍)𝑘))
9081, 10, 86, 89ofc1 7297 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
9178, 90mpdan 683 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
9276, 91syl5eq 2845 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
9365, 75, 923eqtr4d 2843 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘))
9493ralrimivva 3160 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘))
951, 5, 56, 36, 7, 58, 73, 19mamucl 20698 . . . 4 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
96 elmapi 8285 . . . 4 (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
97 ffn 6389 . . . 4 (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂))
9895, 96, 973syl 18 . . 3 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂))
99 fconst6g 6443 . . . . . . 7 (𝑋𝐵 → ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵)
1009, 99syl 17 . . . . . 6 (𝜑 → ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵)
101 elmapg 8276 . . . . . . 7 ((𝐵 ∈ V ∧ (𝑀 × 𝑂) ∈ Fin) → (((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵))
10268, 80, 101sylancr 587 . . . . . 6 (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵))
103100, 102mpbird 258 . . . . 5 (𝜑 → ((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
1041, 4ringvcl 20695 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ∧ (𝑌𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂))) → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
1055, 103, 82, 104syl3anc 1364 . . . 4 (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
106 elmapi 8285 . . . 4 ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
107 ffn 6389 . . . 4 ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂))
108105, 106, 1073syl 18 . . 3 (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂))
109 eqfnov2 7144 . . 3 ((((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂) ∧ (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂)) → (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘)))
11098, 108, 109syl2anc 584 . 2 (𝜑 → (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘)))
11194, 110mpbird 258 1 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  wral 3107  Vcvv 3440  {csn 4478  cop 4484  cotp 4486  cmpt 5047   × cxp 5448   Fn wfn 6227  wf 6228  cfv 6232  (class class class)co 7023  𝑓 cof 7272  𝑚 cmap 8263  Fincfn 8364  Basecbs 16316  +gcplusg 16398  .rcmulr 16399  0gc0g 16546   Σg cgsu 16547  Ringcrg 18991   maMul cmmul 20680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-ot 4487  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-supp 7689  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fsupp 8687  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-2 11554  df-n0 11752  df-z 11836  df-uz 12098  df-fz 12747  df-fzo 12888  df-seq 13224  df-hash 13545  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-plusg 16411  df-0g 16548  df-gsum 16549  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-mhm 17778  df-grp 17868  df-minusg 17869  df-ghm 18101  df-cntz 18192  df-cmn 18639  df-abl 18640  df-mgp 18934  df-ur 18946  df-ring 18993  df-mamu 20681
This theorem is referenced by:  matassa  20741  mdetmul  20920
  Copyright terms: Public domain W3C validator