Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∧ wa 397
∈ wcel 2107 class class class wbr 5149
ℝcr 11109 0cc0 11110
1c1 11111 < clt 11248
≤ cle 11249 ℕcn 12212 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 |
This theorem is referenced by: nnnle0
12245 nngt0i
12251 nnsub
12256 nngt0d
12261 nnrecl
12470 nn0ge0
12497 0mnnnnn0
12504 elnnnn0b
12516 nn0sub
12522 elnnz
12568 nnm1ge0
12630 gtndiv
12639 elpq
12959 elpqb
12960 rpnnen1lem2
12961 rpnnen1lem1
12962 rpnnen1lem3
12963 rpnnen1lem5
12965 nnrp
12985 nnledivrp
13086 qbtwnre
13178 fzo1fzo0n0
13683 ubmelfzo
13697 elfznelfzo
13737 adddivflid
13783 flltdivnn0lt
13798 quoremz
13820 quoremnn0ALT
13822 intfracq
13824 fldiv
13825 expnnval
14030 nnlesq
14169 expnngt1
14204 faclbnd
14250 bc0k
14271 ccatval21sw
14535 ccats1pfxeqrex
14665 harmonic
15805 nndivdvds
16206 evennn2n
16294 nnoddm1d2
16329 ndvdssub
16352 ndvdsadd
16353 sqgcd
16502 lcmgcdlem
16543 qredeu
16595 isprm5
16644 divdenle
16685 hashgcdlem
16721 oddprm
16743 pythagtriplem12
16759 pythagtriplem13
16760 pythagtriplem14
16761 pythagtriplem16
16763 pythagtriplem19
16766 pc2dvds
16812 fldivp1
16830 prmreclem3
16851 prmgaplem7
16990 mulgnn
18958 mulgnegnn
18964 odmodnn0
19408 prmirredlem
21042 znidomb
21117 fvmptnn04if
22351 chfacfscmul0
22360 chfacfpmmul0
22364 dyadss
25111 volivth
25124 vitali
25130 mbfi1fseqlem3
25235 itg2gt0
25278 dgrcolem2
25788 logtayllem
26167 leibpi
26447 eldmgm
26526 basellem6
26590 muinv
26697 logfac2
26720 bcmono
26780 bposlem5
26791 bposlem6
26792 lgsval4a
26822 gausslemma2dlem1a
26868 ostth2lem1
27121 ostth2lem3
27138 clwwlkf1
29302 clwwlknonccat
29349 minvecolem3
30129 xnn0gt0
31982 tgoldbachgtda
33673 subfaclim
34179 subfacval3
34180 snmlff
34320 nn0prpwlem
35207 nndivsub
35342 nndivlub
35343 poimirlem32
36520 fzmul
36609 factwoffsmonot
41023 negn0nposznnd
41194 nn0rppwr
41224 nn0expgcd
41226 irrapxlem1
41560 irrapxlem2
41561 pellexlem1
41567 monotoddzzfi
41681 rmynn
41695 jm2.24nn
41698 jm2.17c
41701 congabseq
41713 jm2.20nn
41736 rmydioph
41753 dgrsub2
41877 idomrootle
41937 rp-isfinite6
42269 rexanuz2nf
44203 stoweidlem17
44733 stoweidlem49
44765 wallispilem4
44784 stirlinglem6
44795 stirlinglem7
44796 stirlinglem10
44799 fourierdlem73
44895 fourierdlem111
44933 2ffzoeq
46036 iccpartltu
46093 fmtnosqrt
46207 2pwp1prm
46257 nneven
46366 |