Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nngt0 | Structured version Visualization version GIF version |
Description: A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
Ref | Expression |
---|---|
nngt0 | ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11989 | . 2 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
2 | nnge1 12010 | . 2 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
3 | 0lt1 11506 | . . 3 ⊢ 0 < 1 | |
4 | 0re 10986 | . . . 4 ⊢ 0 ∈ ℝ | |
5 | 1re 10984 | . . . 4 ⊢ 1 ∈ ℝ | |
6 | ltletr 11076 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴)) | |
7 | 4, 5, 6 | mp3an12 1450 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 ≤ 𝐴) → 0 < 𝐴)) |
8 | 3, 7 | mpani 693 | . 2 ⊢ (𝐴 ∈ ℝ → (1 ≤ 𝐴 → 0 < 𝐴)) |
9 | 1, 2, 8 | sylc 65 | 1 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) |
Copyright terms: Public domain | W3C validator |