MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uz3m2nn Structured version   Visualization version   GIF version

Theorem uz3m2nn 12020
Description: An integer greater than or equal to 3 decreased by 2 is a positive integer, analogous to uz2m1nn 12053. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
Assertion
Ref Expression
uz3m2nn (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)

Proof of Theorem uz3m2nn
StepHypRef Expression
1 eluz2 11981 . . 3 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
2 2lt3 11537 . . . . . 6 2 < 3
3 2re 11432 . . . . . . . 8 2 ∈ ℝ
43a1i 11 . . . . . . 7 (𝑁 ∈ ℤ → 2 ∈ ℝ)
5 3re 11438 . . . . . . . 8 3 ∈ ℝ
65a1i 11 . . . . . . 7 (𝑁 ∈ ℤ → 3 ∈ ℝ)
7 zre 11715 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
8 ltletr 10455 . . . . . . 7 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 < 3 ∧ 3 ≤ 𝑁) → 2 < 𝑁))
94, 6, 7, 8syl3anc 1494 . . . . . 6 (𝑁 ∈ ℤ → ((2 < 3 ∧ 3 ≤ 𝑁) → 2 < 𝑁))
102, 9mpani 687 . . . . 5 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → 2 < 𝑁))
1110imp 397 . . . 4 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
12113adant1 1164 . . 3 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
131, 12sylbi 209 . 2 (𝑁 ∈ (ℤ‘3) → 2 < 𝑁)
14 2nn 11431 . . 3 2 ∈ ℕ
15 eluzge3nn 12019 . . 3 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
16 nnsub 11402 . . 3 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 < 𝑁 ↔ (𝑁 − 2) ∈ ℕ))
1714, 15, 16sylancr 581 . 2 (𝑁 ∈ (ℤ‘3) → (2 < 𝑁 ↔ (𝑁 − 2) ∈ ℕ))
1813, 17mpbid 224 1 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111  wcel 2164   class class class wbr 4875  cfv 6127  (class class class)co 6910  cr 10258   < clt 10398  cle 10399  cmin 10592  cn 11357  2c2 11413  3c3 11414  cz 11711  cuz 11975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-z 11712  df-uz 11976
This theorem is referenced by:  clwwlknonex2  27480  clwwnrepclwwn  27722  clwwnrepclwwnOLD  27723  numclwwlk1lem2foa  27740  numclwwlk1lem2foaOLD  27741  numclwwlk1lem2fo  27745  numclwwlk1lem2foOLD  27750  numclwlk1lem2  27769  numclwwlk2  27784  numclwwlk2OLD  27791  numclwwlk3  27796
  Copyright terms: Public domain W3C validator