MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uz3m2nn Structured version   Visualization version   GIF version

Theorem uz3m2nn 12919
Description: An integer greater than or equal to 3 decreased by 2 is a positive integer, analogous to uz2m1nn 12951. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
Assertion
Ref Expression
uz3m2nn (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)

Proof of Theorem uz3m2nn
StepHypRef Expression
1 eluz2 12872 . . 3 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
2 2lt3 12428 . . . . . 6 2 < 3
3 2re 12330 . . . . . . 7 2 ∈ ℝ
4 3re 12336 . . . . . . 7 3 ∈ ℝ
5 zre 12606 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6 ltletr 11345 . . . . . . 7 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 < 3 ∧ 3 ≤ 𝑁) → 2 < 𝑁))
73, 4, 5, 6mp3an12i 1462 . . . . . 6 (𝑁 ∈ ℤ → ((2 < 3 ∧ 3 ≤ 𝑁) → 2 < 𝑁))
82, 7mpani 694 . . . . 5 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → 2 < 𝑁))
98imp 405 . . . 4 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
1093adant1 1127 . . 3 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
111, 10sylbi 216 . 2 (𝑁 ∈ (ℤ‘3) → 2 < 𝑁)
12 2nn 12329 . . 3 2 ∈ ℕ
13 eluzge3nn 12918 . . 3 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
14 nnsub 12300 . . 3 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 < 𝑁 ↔ (𝑁 − 2) ∈ ℕ))
1512, 13, 14sylancr 585 . 2 (𝑁 ∈ (ℤ‘3) → (2 < 𝑁 ↔ (𝑁 − 2) ∈ ℕ))
1611, 15mpbid 231 1 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wcel 2099   class class class wbr 5144  cfv 6544  (class class class)co 7414  cr 11146   < clt 11287  cle 11288  cmin 11483  cn 12256  2c2 12311  3c3 12312  cz 12602  cuz 12866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-nn 12257  df-2 12319  df-3 12320  df-z 12603  df-uz 12867
This theorem is referenced by:  clwwlknonex2  30037  clwwnrepclwwn  30272  numclwwlk1lem2foa  30282  numclwwlk1lem2fo  30286  numclwlk1lem2  30298  numclwwlk2  30309  numclwwlk3  30313  fltnltalem  42350
  Copyright terms: Public domain W3C validator