Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elnnnn0c | Structured version Visualization version GIF version |
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.) |
Ref | Expression |
---|---|
elnnnn0c | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 11995 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
2 | nnge1 11756 | . . 3 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
3 | 1, 2 | jca 515 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
4 | 0lt1 11252 | . . . . 5 ⊢ 0 < 1 | |
5 | 0re 10733 | . . . . . 6 ⊢ 0 ∈ ℝ | |
6 | 1re 10731 | . . . . . 6 ⊢ 1 ∈ ℝ | |
7 | nn0re 11997 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
8 | ltletr 10822 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) | |
9 | 5, 6, 7, 8 | mp3an12i 1466 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁)) |
10 | 4, 9 | mpani 696 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 → 0 < 𝑁)) |
11 | 10 | imdistani 572 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) |
12 | elnnnn0b 12032 | . . 3 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) | |
13 | 11, 12 | sylibr 237 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ) |
14 | 3, 13 | impbii 212 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2114 class class class wbr 5040 ℝcr 10626 0cc0 10627 1c1 10628 < clt 10765 ≤ cle 10766 ℕcn 11728 ℕ0cn0 11988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-nn 11729 df-n0 11989 |
This theorem is referenced by: nn0ge2m1nn 12057 nn01to3 12435 wrdsymb1 14006 lswccats1fst 14095 nn0o1gt2 15838 pcelnn 16318 lgsabs1 26084 pthdlem1 27719 wlkiswwlks2lem1 27819 wwlksm1edg 27831 clwlkclwwlklem2 27949 clwlkclwwlkflem 27953 clwlkclwwlkf 27957 fourierdlem52 43281 |
Copyright terms: Public domain | W3C validator |