MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnnn0c Structured version   Visualization version   GIF version

Theorem elnnnn0c 12426
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.)
Assertion
Ref Expression
elnnnn0c (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))

Proof of Theorem elnnnn0c
StepHypRef Expression
1 nnnn0 12388 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 nnge1 12153 . . 3 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
31, 2jca 511 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
4 0lt1 11639 . . . . 5 0 < 1
5 0re 11114 . . . . . 6 0 ∈ ℝ
6 1re 11112 . . . . . 6 1 ∈ ℝ
7 nn0re 12390 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
8 ltletr 11205 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
95, 6, 7, 8mp3an12i 1467 . . . . 5 (𝑁 ∈ ℕ0 → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
104, 9mpani 696 . . . 4 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 → 0 < 𝑁))
1110imdistani 568 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
12 elnnnn0b 12425 . . 3 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
1311, 12sylibr 234 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ)
143, 13impbii 209 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111   class class class wbr 5091  cr 11005  0cc0 11006  1c1 11007   < clt 11146  cle 11147  cn 12125  0cn0 12381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382
This theorem is referenced by:  nn0ge2m1nn  12451  nn01to3  12839  wrdsymb1  14460  lswccats1fst  14543  nn0o1gt2  16292  pcelnn  16782  lgsabs1  27275  pthdlem1  29745  cyclnumvtx  29779  wlkiswwlks2lem1  29848  wwlksm1edg  29860  clwlkclwwlklem2  29978  clwlkclwwlkflem  29982  clwlkclwwlkf  29986  fourierdlem52  46202
  Copyright terms: Public domain W3C validator