MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnnnn0c Structured version   Visualization version   GIF version

Theorem elnnnn0c 12557
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.)
Assertion
Ref Expression
elnnnn0c (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))

Proof of Theorem elnnnn0c
StepHypRef Expression
1 nnnn0 12519 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 nnge1 12280 . . 3 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
31, 2jca 510 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
4 0lt1 11776 . . . . 5 0 < 1
5 0re 11256 . . . . . 6 0 ∈ ℝ
6 1re 11254 . . . . . 6 1 ∈ ℝ
7 nn0re 12521 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
8 ltletr 11346 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
95, 6, 7, 8mp3an12i 1461 . . . . 5 (𝑁 ∈ ℕ0 → ((0 < 1 ∧ 1 ≤ 𝑁) → 0 < 𝑁))
104, 9mpani 694 . . . 4 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 → 0 < 𝑁))
1110imdistani 567 . . 3 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
12 elnnnn0b 12556 . . 3 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁))
1311, 12sylibr 233 . 2 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → 𝑁 ∈ ℕ)
143, 13impbii 208 1 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098   class class class wbr 5152  cr 11147  0cc0 11148  1c1 11149   < clt 11288  cle 11289  cn 12252  0cn0 12512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-n0 12513
This theorem is referenced by:  nn0ge2m1nn  12581  nn01to3  12965  wrdsymb1  14545  lswccats1fst  14627  nn0o1gt2  16367  pcelnn  16848  lgsabs1  27297  pthdlem1  29608  wlkiswwlks2lem1  29708  wwlksm1edg  29720  clwlkclwwlklem2  29838  clwlkclwwlkflem  29842  clwlkclwwlkf  29846  fourierdlem52  45593
  Copyright terms: Public domain W3C validator