![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recgt1i | Structured version Visualization version GIF version |
Description: The reciprocal of a number greater than 1 is positive and less than 1. (Contributed by NM, 23-Feb-2005.) |
Ref | Expression |
---|---|
recgt1i | ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt1 11761 | . . . . 5 ⊢ 0 < 1 | |
2 | 0re 11241 | . . . . . 6 ⊢ 0 ∈ ℝ | |
3 | 1re 11239 | . . . . . 6 ⊢ 1 ∈ ℝ | |
4 | lttr 11315 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴)) | |
5 | 2, 3, 4 | mp3an12 1448 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴)) |
6 | 1, 5 | mpani 695 | . . . 4 ⊢ (𝐴 ∈ ℝ → (1 < 𝐴 → 0 < 𝐴)) |
7 | 6 | imdistani 568 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
8 | recgt0 12085 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < (1 / 𝐴)) |
10 | recgt1 12135 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐴 ↔ (1 / 𝐴) < 1)) | |
11 | 10 | biimpa 476 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 1 < 𝐴) → (1 / 𝐴) < 1) |
12 | 7, 11 | sylancom 587 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 / 𝐴) < 1) |
13 | 9, 12 | jca 511 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 class class class wbr 5143 (class class class)co 7415 ℝcr 11132 0cc0 11133 1c1 11134 < clt 11273 / cdiv 11896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 |
This theorem is referenced by: recnz 12662 xov1plusxeqvd 13502 log2tlbnd 26871 padicabvf 27558 rtprmirr 41897 stoweidlem34 45413 eenglngeehlnmlem2 47802 sepfsepc 47937 |
Copyright terms: Public domain | W3C validator |