MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recgt1i Structured version   Visualization version   GIF version

Theorem recgt1i 11535
Description: The reciprocal of a number greater than 1 is positive and less than 1. (Contributed by NM, 23-Feb-2005.)
Assertion
Ref Expression
recgt1i ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1))

Proof of Theorem recgt1i
StepHypRef Expression
1 0lt1 11160 . . . . 5 0 < 1
2 0re 10641 . . . . . 6 0 ∈ ℝ
3 1re 10639 . . . . . 6 1 ∈ ℝ
4 lttr 10715 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
52, 3, 4mp3an12 1448 . . . . 5 (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
61, 5mpani 695 . . . 4 (𝐴 ∈ ℝ → (1 < 𝐴 → 0 < 𝐴))
76imdistani 572 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
8 recgt0 11484 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
97, 8syl 17 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < (1 / 𝐴))
10 recgt1 11534 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐴 ↔ (1 / 𝐴) < 1))
1110biimpa 480 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 1 < 𝐴) → (1 / 𝐴) < 1)
127, 11sylancom 591 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 / 𝐴) < 1)
139, 12jca 515 1 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2115   class class class wbr 5052  (class class class)co 7149  cr 10534  0cc0 10535  1c1 10536   < clt 10673   / cdiv 11295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296
This theorem is referenced by:  recnz  12054  xov1plusxeqvd  12885  log2tlbnd  25534  padicabvf  26218  rtprmirr  39432  stoweidlem34  42602  eenglngeehlnmlem2  45078
  Copyright terms: Public domain W3C validator